Постепенно случайные находки и сопровождающие их мифические идеи уступили место реальным исследованиям. Предположения, что кто-то сумел получить металлический алюминий до Эрстеда, были отвергнуты, зато древние предметы могли быть изготовлены из самородного алюминия, а его существование получило подтверждение. При изучении некоторых минералов Сибири и Южного Урала, а позднее и проб, взятых на дне Тихого океана, были обнаружены незначительные примеси металлического алюминия. Кроме того, оказалось, что он присутствует в лунном грунте. По-видимому, самородный алюминий не находили просто потому, что не искали, полагая, что его существование в природе невозможно.
Теперь химикам предстояло объяснить, как металлический алюминий смог образоваться естественным путем. В природе не существует столь мощных восстановителей, которые могут его выделить в форме металла. Принятое на сегодня объяснение таково. Оксид алюминия Al2
O3 (в этом соединении его степень окисления Al3+) в недрах земли при температурах свыше 1000 °С частично восстанавливается до AlCl (степень окисления Al+) под действием HCl и доступного восстановителя С (рис. 4.8).Побочный продукт – вода – мог бы гидролизовать образовавшийся AlCl, но «не успевает» это сделать, поскольку при высокой температуре реагирует с углеродом, образуя два газа СО и СН4
(рис. 4.9).AlCl (газообразный при высокой температуре) перемещается в более холодные области на поверхности Земли и затем перегруппировывается, образуя металлический алюминий и хлорид алюминия AlCl3
(рис. 4.10).Фактически проходит окислительно-восстановительная реакция между атомами алюминия: из Al+
образуются Al0 и Al3+, всю показанную схему удалось подтвердить экспериментально. При перемещении из горячей зоны в холодную летучий AlCl играет роль «перевозчика алюминия». Со временем были найдены и другие «транспортные средства».От наблюдения к открытию
В конце XIX в. достоинства металлического никеля (рис. 4.11), такие как механическая прочность в сочетании с коррозионной устойчивостью и жаропрочностью, были хорошо известны. Никель применяли для изготовления заводской аппаратуры и для покрытия металлической посуды. Однако коррозионная устойчивость никеля в бытовых условиях оказалась невысокой. Нагревание такой посуды на огне приводило к постепенному ее разрушению, которое долгое время объясняли коррозией, протекающей при повышенной температуре. Те, кто был более наблюдателен, замечали, что при нагревании этой посуды на раскаленной плите (без контакта с пламенем) коррозия не наблюдалась. Следовательно, кислород и влага воздуха ни при чем. Оказалось, что все дело в контакте никеля с монооксидом углерода СО, который всегда присутствует в открытом пламени. Окончательную ясность внес английский химик и промышленник Л. Монд (1839–1909), изучавший процессы коррозии никелевой аппаратуры в заводских условиях. Он обратил внимание, что при сжигании смеси Н2
и СО пламя было ярко окрашено только в том случае, когда смесь газов подавали через никелевую трубку. Выяснилось, что никель взаимодействует с СО, образуя легколетучее соединение – карбонил никеля Ni(CO)4. Это открытие вызвало интенсивный поток работ, в результате которых были получены карбонилы многих металлов. Возник новый раздел химической науки – химия карбонилов металлов. Кроме того, карбонил никеля подсказал химикам еще одно направление исследований.Простое взамен громоздкого
Очистка металлов от примесей всегда была делом трудоемким, и потому химики постоянно искали простые и удобные способы, позволяющие отделять металл от загрязнений.
Основной источник металлического никеля – сульфидные руды, в которых содержатся также примеси сульфидов кобальта и железа (CoS, FeS и др.). Ранее для получения никеля в промышленности поступали следующим образом: медно-никелевую руду вместе с флюсами (веществами, снижающими температуру плавления) плавили в электропечах. Железо отделяли, окисляя его, т. е. продувая расплав воздухом в специальных емкостях (конвертерах). Оставшийся расплав сульфидов никеля, меди и кобальта охлаждали, мелко измельчали и направляли на флотацию (разделение твердых частиц, основанное на их различной смачиваемости водой, содержащей добавки вспенивателей). Таким способом отделяли медные и кобальтовые сульфиды от никелевых. Далее полученный концентрат сульфида никеля обжигали, при этом получали оксид никеля NiO, а сера удалялась в виде газообразного оксида. Затем полученный оксид никеля восстанавливали в электродуговых печах, и в результате получали металлический никель. Как видим, процесс громоздкий и трудоемкий.
Карбонил никеля открыл другой, более короткий путь. Он основан на том, что Ni(CO)4
– необычайно летучее вещество (tкип. = 43 °С). После обработки смеси сульфидов монооксидом углерода СО под давлением образуется карбонил никеля, который можно легко отогнать (карбонилы остальных металлов гораздо более труднолетучи) (рис. 4.12).