Читаем Карнавал молекул. Химия необычная и забавная полностью

Для того чтобы воспроизвести показанные выше сложные узоры, совсем необязательно изготавливать такие причудливые плитки. На паркете показан прямоугольник, а на мозаике из ящериц – ромб, которые расположены так, что их вершины попадают на одинаковые элементы узора (точки на паркете или правые глаза у ящериц). Если воспроизвести на прямоугольнике или ромбе тот узор, который они охватывают, то получим «кафельные плитки», представляющие собой период, о котором сказано выше. Из таких плиток можно собрать мозаику, точно повторяющую исходный узор. С точки зрения математики такие мозаики весьма просты, у них периоды – прямоугольник или ромб. Итак, нам не удалось получить периодическую мозаику, построенную из каких-то новых фигур, отличающихся от тех, что были упомянуты ранее: треугольники, квадраты, прямоугольники, ромбы и шестиугольники.

Попробуем составить мозаику из набора разных геометрических фигур: шестиугольника, квадрата и двух различных треугольников (рис. 5.59).



Полученная мозаика отчетливо упорядоченная и периодическая. Если соединить прямыми линиями центры четырехлучевых звездочек (серый квадрат) или центры шестиугольников (белый квадрат), то сможем убедиться, что эта мозаика составлена из квадратных «кафельных плиток», т. е. это обычная «квадратная «мозаика, но только разрисованная причудливым узором.

Окончательный вывод – периодические мозаики можно составлять только из треугольников, ромбов, квадратов, прямоугольников и шестиугольников.

«Заглянуть» внутрь кристалла

История того, как ученые нашли способ изучать строение кристаллов, своеобразна. В конце XVII в. шотландский математик и астроном, предшественник Ньютона Джеймс Грегори (1638–1675), обратил внимание на то, что белый свет, прошедший через птичье перо, приобретает радужную окраску. Это привело к тому, что исследователи стали специально изготавливать решетчатые конструкции, которые позволяли разложить проходящий свет на спектральные составляющие. Такие решетки назвали дифракционными (от лат. diffractus – разломанный, переломанный). В процессе дифракции волна огибает препятствие, но, чтобы такое происходило, само препятствие должно быть по размерам соизмеримо с длиной волны. Ствол дерева, торчащий из воды, не меняет картину волнения на воде, а широкий щит создаст позади себя спокойную поверхность без волн. Когда речь идет о световых волнах, то при прохождении через узкую щель (если размер щели близок к длине волны света) происходит их отклонение, причем угол отклонения зависит от длины волны, свет «расщепляется» на составляющие, потому и возникает радужная картина.

Известно также, что свет превращается в радугу, если проходит через стеклянную призму. Но стекло сильно ослабляет инфракрасную и ультрафиолетовую части спектра, а в дифракционных решетках световые лучи постоянно находятся в одной среде (в воздухе), потому их стали широко использовать в спектроскопии.

Естественно, размер штрихов на дифракционной решетке должен быть близок к длине волны света, в среднем 0,0005 мм. Изготовление таких решеток находится на пределе технических возможностей. Пример дифракционной решетки, распространенной в быту, – компакт-диск с расстоянием между спиральными бороздками 0,0016, 0,00074 или 0,00032 мм (в зависимости от того, какой компакт-диск вы держите в руках – CD, DVD или blu-ray). Как и любая дифракционная решетка, он отражает падающий свет, окрашивая его в радужные цвета.

Длина волны рентгеновых лучей по крайней мере в сотню раз меньше, чем у видимого света, и изготовить подходящую для них дифракционную решетку со столь «мелкой насечкой «технически невозможно. Однако проблему удалось решить. В 1912 г. немецкий физик-теоретик Макс Лауэ сделал смелое предположение: в качестве дифракционной решетки для рентгеновых лучей использовать кристаллы. Сама кристаллическая структура и будет играть роль «мелких насечек», размер которых соизмерим с длиной волны рентгеновского излучения.

В том же 1912 г. предположение Макса Лауэ экспериментально проверили два его студента – В. Фридрих и П. Книппинг. Они пропустили рентгеновы лучи через кристалл медного купороса и получили на фотопластинке дифракционную картину – набор равномерно расположенных светлых точек. С тех пор такие картинки называют лауэграммами (рис. 5.60).

Даже неспециалисту в этой области науки отчетливо видно, что точки одинаковой яркости располагаются по вершинам треугольника, квадрата или шестиугольника.

Если дифракционные решетки для видимого света играли роль полезного инструмента в спектроскопии, то в случае рентгеновых лучей сами дифракционные решетки, т. е. кристаллы, стали объектом изучения. Возникла новая научная дисциплина – кристаллография. В 1914 г. Максу Лауэ была присуждена Нобелевская премия по физике «За открытие дифракции рентгеновых лучей на кристаллах». Альберт Эйнштейн назвал открытие Лауэ одним из самых красивых в физике.


Кристалл – это объемная мозаика

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии