Читаем Карта и территория полностью

В последующих главах я более детально рассмотрю причины нынешнего кризиса и его последствия, дам оценку инструментам, которые мы, экономисты, создали, чтобы заглядывать в будущее, а также разберу основные расхождения в политике, которыми страдала экономическая наука в последние годы. Каждая политическая инициатива отражает одновременно видение будущего и представления о том, как работает экономика. Нынешние дебаты являются частью непрерывной эволюции экономического прогнозирования.

<p>Основы регрессионного анализа</p>

Астрономы могут предсказать, во сколько именно взойдет солнце за окном моей спальни через шесть месяцев. У экономистов нет такой возможности. Чтобы увидеть будущее, мы обращаемся к истории, выделяем «движущие силы» прошлых экономических событий и считаем, что они продолжат действие и в будущем. Другими словами, мы стремимся понять, что определяло поток капиталовложений в прошлом и куда они пойдут, если те же силы продолжат действовать в будущем. Чтобы облегчить решение этой сложной задачи, экономисты обращаются к такой дисциплине, как регрессионный анализ19 — статистическому методу, в основе которого лежит анализ вероятности, хорошо знакомый любителям азартных игр.

Исходные данные для прогнозирования деловой активности — это большие массивы временных рядов, которые относятся, например, к розничным продажам, промышленному производству или к объему строительства новых домов. Мы стараемся понять экономические факторы, которые определяют, скажем, месячный объем строительства односемейных домов, и пытаемся спрогнозировать его. В результате общения со строителями я могу для начала взять цены на дома и число создаваемых домохозяйств в качестве объясняющих переменных. Мы называем анализируемые временные ряды зависимыми переменными, а факторы, объясняющие их, — цены на дома и число создаваемых домохозяйств — независимыми переменными. Регрессионный анализ статистически показывает, как изменение любой независимой переменной влияет на объем строительства новых домов. Смысл такого фильтрования состоит в том, что он позволяет получить относительные статистические веса — коэффициенты, — которые в случае применения к ценам на дома и числу создаваемых домохозяйств дают «аппроксимированные» временные ряды, максимально близкие к историческим данным по объему строительства новых домов.

Обладая этими данными, мы можем измерить долю отклонений (дисперсию) зависимой переменной, которая «объясняется» флуктуациями независимых переменных в модели. Эту долю мы называем коэффициентом множественной регрессии (R2). Чем выше R2, тем ближе аппроксимированные временные ряды к историческим рядам. При значении 1,0 модель точно предсказывает реальные ряды данных и полностью объясняет дисперсию зависимой переменной.

Однако надежность результатов зависит от ряда математических условий, предъявляемых к регрессионным переменным. Например, независимые переменные не должны коррелировать друг с другом, т. е. цена дома не должна коррелировать с числом создаваемых домохозяйств. Плюс к этому регрессионные остатки, т. е. разница между фактическим объемом строительства новых домов и его аппроксимированным (расчетным) значением в каждом периоде, не могут быть «сериально коррелированными», другими словами, остатки одного периода не могут влиять на остатки следующего.

В реальности эти условия практически никогда не выполняются. Специалисты по статистике изобрели способы измерять и частично устранять эффект невыполнения необходимых допущений. Например, статистика Дарбина — Уотсона (D — W) характеризует степень сериальной корреляции остатков. D — W варьирует от 0 до 4,0. D — W, равная 2,0, означает, что остатки не коррелируют, а D — W менее 2,0 указывает на положительную сериальную корреляцию, которая приводит к завышению статистической значимости независимых переменных (см. обсуждение t-статистики и статистической значимости ниже)20. Сериальная корреляция характерна практически для всех экономических временных рядов, так как остаток предыдущего квартала в реальности оказывают влияние на остаток текущего квартала. Преобразование уровня временных рядов в абсолютное изменение снижает сериальную корреляцию регрессии, однако при этом теряется важная информация. Лично я при анализе предпочитаю иметь дело с сериальной корреляцией.

T-статистика — это характеристика «статистической значимости» независимой переменной, т. е. вероятности, что ее коэффициент отличен от нуля21. Чем выше t-статистика, тем выше вероятность того, что взаимосвязь между независимой и зависимой переменными реальна, а не случайна. Чтобы экономисты приняли независимую переменную в качестве «причины» изменения зависимой переменной, t-статистика, положительная или отрицательная, должна быть выше 2,0. Оценочная функция Ньюи — Уэста характеризует смещение t-статистики в результате сериальной корреляции и корректирует ее значения так, чтобы они более точно отражали реальные вероятности.

Перейти на страницу:

Похожие книги

Knowledge And Decisions
Knowledge And Decisions

With a new preface by the author, this reissue of Thomas Sowell's classic study of decision making updates his seminal work in the context of The Vision of the Anointed. Sowell, one of America's most celebrated public intellectuals, describes in concrete detail how knowledge is shared and disseminated throughout modern society. He warns that society suffers from an ever-widening gap between firsthand knowledge and decision making — a gap that threatens not only our economic and political efficiency, but our very freedom because actual knowledge gets replaced by assumptions based on an abstract and elitist social vision of what ought to be.Knowledge and Decisions, a winner of the 1980 Law and Economics Center Prize, was heralded as a "landmark work" and selected for this prize "because of its cogent contribution to our understanding of the differences between the market process and the process of government." In announcing the award, the center acclaimed Sowell, whose "contribution to our understanding of the process of regulation alone would make the book important, but in reemphasizing the diversity and efficiency that the market makes possible, [his] work goes deeper and becomes even more significant.""In a wholly original manner [Sowell] succeeds in translating abstract and theoretical argument into a highly concrete and realistic discussion of the central problems of contemporary economic policy."— F. A. Hayek"This is a brilliant book. Sowell illuminates how every society operates. In the process he also shows how the performance of our own society can be improved."— Milton FreidmanThomas Sowell is a senior fellow at Stanford University's Hoover Institution. He writes a biweekly column in Forbes magazine and a nationally syndicated newspaper column.

Thomas Sowell

Экономика / Научная литература / Обществознание, социология / Политика / Философия