Рис. 13. Результирующая стрелка для чуть более толстой стеклянной пластинки несколько длиннее благодаря большему относительному углу между стрелками заднего и переднего отражения. Это связано с тем, что фотону, отразившемуся от задней поверхности, требуется больше времени, чтобы попасть в А, по сравнению с предыдущим примером.
Если мы увеличим толщину стекла настолько, чтобы стрелка часов сделала добавочный
Если толщина стекла такова, что стрелка часов делает добавочные 1/4 или 3/4 оборота, то две маленькие стрелочки будут направлены под прямым углом. В этом случае результирующая стрелка представляет собой гипотенузу прямоугольного треугольника, и, по теореме Пифагора, квадрат гипотенузы равен сумме квадратов катетов. Так мы получаем величину, правильную «дважды в сутки»; 4 % + 4 % дают 8 % (см. рис. 16).
Рис. 14. Когда толщина стекла такова, что стрелка часов делает добавочный полуоборот для фотона, отразившегося от задней поверхности, стрелки переднего и заднего отражения указывают в одном направлении. Это дает результирующую стрелку длиной 0,4, что соответствует вероятности 16 %.
Рис. 15. Когда толщина стекла такова, что стрелка часов делает один или больше полных добавочных оборотов для фотона, отразившегося от задней поверхности, результирующая стрелка опять равна нулю, и отражения вообще нет.
Рис. 16. Когда стрелки переднего и заднего отражения составляют прямой угол, результирующая стрелка представляет собой гипотенузу прямоугольного треугольника. Таким образом, ее квадрат равен сумме двух других квадратов – 8 %.
Заметьте, что по мере того как мы постепенно увеличиваем толщину стекла, стрелка переднего отражения всегда указывает в одном направлении, тогда как стрелка заднего отражения постепенно меняет направление. Изменение относительного направления двух стрелок приводит к тому, что длина результирующей стрелки периодически меняется от нуля до 0,4. Таким образом,
Рис. 17. Когда тонкое стекло заменяют более толстым, стрелка часов, отмеряющая время движения фотона, отраженного от задней поверхности, поворачивается чуть больше и относи-тельный угол между стрелками переднего и заднего отражения меняется. Это приводит к тому, что результирующая стрелка снова и снова изменяет длину, а ее квадрат колеблется от 0 до 16 % и опять до 0.
Только что я показал вам, как можно точно описать это странное частичное отражение, рисуя на бумаге какие-то нелепые стрелки. Специальное научное название этих стрелок – «амплитуда вероятности», и я чувствую себя более значительным, когда говорю: «Мы вычисляем амплитуду вероятности события». Однако я предпочитаю говорить просто, что мы пытаемся найти стрелку, квадрат длины которой является вероятностью того, что что-нибудь случится.