Читаем КЭД – странная теория света и вещества полностью

Квантовая механика была замечательным достижением, так как смогла объяснить всю химию и различные свойства веществ. Но по-прежнему оставалась нерешенной проблема взаимодействия света и вещества. То есть требовалось изменить теорию электричества и магнетизма Максвелла, чтобы привести ее в соответствие со вновь разработанными принципами квантовой механики. И вот, наконец, в 1929 г. рядом физиков была создана новая теория – квантовая теория взаимодействия света и вещества, получившая ужасное название «квантовая электродинамика».

К несчастью, у этой теории был серьезный недостаток. Если вы считали что-то приближенно, ответ получался разумным. Но если вы пытались посчитать более точно, оказывалось, что поправка, которая, казалось бы, должна быть незначительной (например, следующий член ряда), была в действительности большой и даже очень большой. В действительности она равнялась бесконечности. Так что получалось, что ничего нельзя посчитать с высокой точностью.

Кстати, все, что я вам сейчас рассказал, представляет собой пример того, что я называю «история физики глазами физика», – а она всегда неправильна. Я передаю вам весьма условный миф, который физики рассказывают своим студентам, а эти студенты – своим студентам, и все это совсем не обязательно имеет отношение к реальному историческому развитию, которого я в действительности не знаю!

Но продолжим нашу «историю». Используя теорию относительности, Поль Дирак разработал релятивистскую теорию электрона, которая не учитывала всех эффектов взаимодействия электрона со светом. Согласно теории Дирака электрон обладает магнитным моментом – как маленький магнитик, равным точно 1 в определенных единицах измерения. Затем примерно в 1948 г. экспериментаторы открыли, что действительная величина ближе к 1,00118 (с погрешностью около 3 в последней цифре). Поскольку, конечно, было известно, что электроны взаимодействуют со светом, ожидали небольшой поправки. Ожидали также, что эту поправку можно будет объяснить с точки зрения новой теории квантовой электродинамики. Но когда произвели вычисления, то вместо 1,00118 получили бесконечность – что, разумеется, противоречит опыту!

Проблема вычислений в квантовой электродинамике была решена Джулианом Швингером, Синьитиро Томонагой и мною примерно в 1948 г. Швингер первым посчитал поправку, используя некую хитрость. Его теоретическая оценка была равна приблизительно 1,00116. Она оказалась достаточно близка к экспериментальным данным и подтвердила правильность избранного нами пути. Наконец у нас появилась квантовая теория электричества и магнетизма, при помощи которой мы могли считать! Эту теорию я собираюсь вам описать.

Квантовая электродинамика существует уже свыше пятидесяти лет. Она многократно подвергалась все более и более тщательной проверке во все более разнообразных условиях. В настоящее время я могу с гордостью сказать, что между экспериментом и теорией нет существенных расхождений!

Эту теорию, можно сказать, прокрутили в центрифуге, и она выдержала испытание на прочность. Приведу несколько последних данных. Эксперименты дают для числа Дирака 1,00115965221 (с погрешностью около 4 в последнем знаке), а теория – 1,00115965246 (с примерно в пять раз большей погрешностью). Чтобы вы смогли оценить точность этих чисел, представьте себе, что вы измерили расстояние от Лос-Анджелеса до Нью-Йорка с точностью до толщины человеческого волоса. Вот с какой точностью была проверена квантовая электродинамика за последние пятьдесят лет – как теоретически, так и экспериментально. Между прочим, я привел вам только один пример. И многие другие величины, измеренные со сравнимой точностью, также очень хорошо согласуются с теорией. Теория проверялась в диапазоне расстояний от ста размеров земного шара до одной сотой атомного ядра. Я привожу эти числа, чтобы заставить вас поверить, что теория не так уж плоха! Впоследствии я расскажу, как делались эти вычисления.

Я хотел бы еще раз поразить вас огромным диапазоном описываемых квантовой электродинамикой явлений. Проще сказать иначе: теория описывает все явления физического мира, за исключением гравитации – того, что удерживает вас на ваших местах (на самом деле, я думаю, это сочетание гравитации и вежливости), – и радиоактивных явлений, которые состоят в переходах ядер с уровня на уровень. Итак, что у нас остается помимо гравитации и радиоактивности (более точно, ядерной физики)? Бензин, сгорающий в автомобильных двигателях, пена и пузыри, твердость соли или меди, упругость стали. Да и биологи пытаются при помощи химии понять как можно больше свойств живого, а, как я уже объяснял, теория, стоящая за химией, – это квантовая электродинамика.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука