Что произойдет, если мяч движется в невесомости, в космическом пространстве, и летит прямо к стене? Пусть в четверг утром (Т
0) он начинает свой путь в Х0 (см. рис. 53). Через некоторое время он оказывается на другом месте, в X. Продолжая двигаться, мяч образует наклонную «полосу мяча» на пространственно-временной диаграмме. Ударившись о стенку (стоящую неподвижно, и поэтому изображаемую вертикальной полосой), мяч движется назад по другой пространственно-временно́й траектории. Точно в то же место (Х0), откуда вылетел, но в другую временную точку (Т6).
Рис. 53. Бейсбольный мяч, летящий под прямым углом к стенке и затем отскакивающий на первоначальное место (показанное под графиком), движется в одном измерении, а на графике изображается в виде наклонной «полосы мяча». В моменты времени Т
1 и Т2 мяч приближается к стенке, в момент Т3 ударяется в нее и начинает обратный путь.
Что касается временной шкалы, то удобней откладывать время не в секундах, а в значительно меньших единицах. Поскольку мы будем иметь дело с очень быстро движущимися электронами и фотонами, я хочу, чтобы линия под углом 45° изображала нечто, движущееся со скоростью света. Например, для частицы, летящей со скоростью света из Х
1Т2 в Х2Т2 горизонтальное расстояние между Х1 и Х2 равно вертикальному расстоянию между Τ1 и Т2 (см. рис. 54). Масштабный множитель, на который растянута ось времени (чтобы линия под углом 45° изображала частицу, движущуюся со скоростью света), называется с, и вы увидите, что эти с мельтешат повсюду в формулах Эйнштейна – это следствие неудачного выбора в качестве единицы времени секунды, а не времени, за которое свет пролетает 1 метр.
Рис. 54. В этих графиках я буду использовать такую шкалу времени, что частицы, летящие со скоростью света, будут распространяться под углом в 45° в пространстве-времени. Время, которое нужно свету, чтобы пролететь 30 см – из Х
1 в Х2 или из Х2 в Х1 – порядка одной миллиардной доли секунды.
Теперь давайте подробно рассмотрим первое фундаментальное действие: фотон летит из одного места в другое. Я произвольно изображу это действие волнистой линией, соединяющей А
и В. Мне следует быть точнее: надо было бы сказать, что фотон, про который известно, что он находится в данный момент времени в данном месте, имеет некоторую амплитуду попасть в другое место в другой момент времени. На моем пространственно-временном графике (см. рис. 55) у фотона в точке А (с координатами X1 и T1) имеется амплитуда попасть в точку В (с координатами Х2 и Т2). Величину этой амплитуды я буду называть Р(А – В).
Рис. 55.
Фотон (изображенный волнистой линией) с некоторой амплитудой может попасть из одной точки пространства-времени (А) в другую точку (В). Эта амплитуда, которую я буду называть Р(А – В), вычисляется по формуле, зависящей только от разности пространственных (Χ1– Χ2) и временных (Т2–Т1) координат. На самом деле это простая формула: Р(А – В) равна обратной величине разности квадрата этих величин – «интервала» I, который можно записать как (X2–X1)2–(T2–T1)2.
Для длины стрелки Р
(А – В) имеется формула. Эта формула – один из великих законов Природы, и она очень проста. Она зависит от разницы пространственных и временных координат двух точек. Математически[15] эта разница может быть выражена как (Х2–Х1) и (T2–T1).Основной вклад в Р
(А – В), как и следовало ожидать, дает движение с обычной скоростью света – когда (Х2–Х1) равно (Т2–T1). Но кроме того, имеется амплитуда распространения света быстрее (или медленнее) обычной скорости света. На предыдущей лекции вы узнали, что свет распространяется не только по прямой: теперь вы узнаете, что он распространяется не только со скоростью света!