Читаем Кентерберийские головоломки полностью

Возьмем LMравным половине диагонали ОN.Проведем прямую NMи опустим из Lперпендикуляр на NM.Тогда LPбудет равно стороне всех трех квадратов, сумма площадей которых равна площади большого квадрата QNLO.Читатель сможет теперь без труда вырезать шесть искомых частей, перенумерованных на первом рисунке.


85. Читателю может прийти в голову, что история о медведе на Северном полюсе не имеет никакого отношения к изложенной далее головоломке. На самом деле это не так. Одиннадцать медведей невозможно расположить таким образом, чтобы они образовали семь рядов по четыре медведя в каждом. Но другое дело, когда капитан Лонгбау сообщает нам, что «оказалосьсемь рядов по четыре медведя в каждом».


Ибо если расположить их так, как показано на рисунке, чтобы три медведя оказались на одной прямой с Северным полюсом, то на каждой из семи прямых действительно будет по четыре животных. На решение задачи не влияет, очевидно, тот факт, имеет ли этот седьмой ряд в длину сотню миль или сотню футов, лишь бы он был прямым – обстоятельство, которое капитан, быть может, проверил с помощью своего карманного компаса.


86. Требовалось показать, как житель города Амог бы посетить каждый город ровно по одному разу и закончить свое путешествие в Z. Эта головоломка содержит маленький трюк. После того как читатель докажет, к своему удовлетворению, что головоломка неразрешима при условиях, как он понял их первоначально, ему следует внимательно изучить букву формулировки, дабы найти в ней брешь.



Было сказано: «Это было бы нетрудно сделать, если бы он мог пользоваться не только железными, но и шоссейными дорогами, однако это исключено». Далее, хотя и запрещается пользоваться шоссейными дорогами, но ничего не сказано про море! Если мы вновь внимательно изучим карту, то заметим, что два города расположены на побережье. Достигнув одного из этих городов, он садится на судно, совершающее прибрежное плавание, и прибывает в другой порт. Полный путь показан на рисунке жирной линией. (См. также решение задачи 94.)


87. Решение таково. Вы, конечно, можете принять предложение «попытаться сделать это за 20 шагов», но потерпите неудачу. Наименьшее возможное число шагов 26. Передвигайте вагоны так, чтобы они занимали последовательно следующие положения:



Всего – 26 шагов.

88. Наименьшее возможное число яиц, которое миссис Коуви могла взять с собой на рынок, равно 719. После того как она продала половину этого числа и отдала сверх того пол-яйца, у не оставалось 359 яиц; после второй операции осталось 239 яиц; после третьей – 179, а после четвертой – 143 яйца. Это количество она смогла разделить поровну между своими 13 друзьями, дав каждому из них по 11 яиц. При всех этих операциях она не повредила ни одного яйца.


89. Два слова, дающие решение нашей головоломки, – это BLUEBELL (колокольчик) и PEARTREE (грушевое дерево). Расположите буквы следующим образом: ВЗ – 1, L6 – 8, U5 – 3, Е4 – 6, В7 – 5, Е2 – 4, L9 – 7, L9 – 2. Это означает, что вы берете В, прыгаете с 3 на 1 и выписываете букву В на месте 1 и т. д. Второе слово можно выписать в том же порядке. Решение зависит от выбора слова, у которого вторая буква совпадает с восьмой, а четвертая – с шестой, поскольку эти буквы можно менять местами, не нарушая соответствующее слово. Слово MARITIMA (морская гвоздика) тоже подошло бы, если бы оно было словом английского языка.


90. Вот как следует расположить семь человек.



Разумеется, за круглым столом А будет соседом человека, указанного в конце строки.

Первоначально я сформулировал эту задачу для 6 человек и 10 дней. Разумеется, легко видеть, что максимальное число расположений для пчеловек равна (n – 1) (n – 2)/2. Эрнст Бергольт первым обнаружил сравнительно простой метод решения для всех случаев, где правно простому числу +1. Затем я указал способ построения решения для 10 человек, опираясь на который, Е. Д. Бьюли нашел общий метод для любых четных чисел. Нечетные числа, однако, оказались крайне трудными, и единственными нечетными числами, с которыми удалось справиться, были 7 (приведен выше), 5, 9, 17 и 33, причем четыре последних равны некой степени 2 плюс 1. Наконец, хотя и не без больших трудностей, я нашел некий тонкий метод решения для всех случаев и выписал схемы для всех чисел до 25 включительно. Для случая 11 решение получил также У. Наш, Быть может, читатель испытает свои способности в случае 13. Он обнаружит, что это необычайно крепкий орешек.


91. Существует 12 способов расположения коробок без учета рисунков. Если бы все 13 рисунков были различны, то ответ оказался бы равен 93 312, Но поскольку в некоторых случаях коробки можно переставлять, не меняя расположения рисунков, число способов уменьшается на 1728, и, следовательно, коробки в соответствий с условиями можно расположить 91 584 способами. Я предоставляю моим читателям выяснить самостоятельно, как получаются эти числа.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика