Читаем Кентерберийские головоломки полностью

Площадь в каждом случае равна 341880 квадратным единицам. Я не стану здесь подробно показывать, как именно я получил эти числа. Однако я скажу, что первые три треугольника получены описанным выше способом, отправляясь от чисел 3 и 4, которые приводят к порождающим парам 37, 7; 37, 33; 37, 40. Эти три пары чисел дают решение неопределенного уравнения

а 3b– b 3а= 341 880.

Если мы сможем найти другую пару чисел, то дело будет сделано. Этими производящими числами будут 56, 55, которые и приводят к последнему треугольнику. Следующий ответ, наилучший после данного, который мне удалось найти, получается из 5 и 6, порождающих производящие пары 91, 11; 91, 85; 91, 96. Четвертой порождающей парой будет 63, 42.

Читатель поймет из того, что я сказал выше, что существует сколь угодно много равновеликих рациональных прямоугольных треугольников, стороны которых выражаются целыми числами.


108. Вот простое решение головоломки о трех девятках: 9 + 9/9.

Чтобы разделить 18 на 9 [38](или 9/10), мы, разумеется, умножим это число на 10 и разделим его на 9. В результате, как и требовалось, получится число 20.


109. Решение состоит в следующем. Партия двух игроков, в совершенстве владеющих данной игрой, всегда должна заканчиваться вничью. Ни один из таких игроков не может выиграть у другого иначе, как по недосмотру противника. Если Нолик (первый игрок) занимает центр, Крестик должен занять угол на своем первом ходу, в противном случае Нолик несомненно выиграет. Если Нолик на первом ходу занимает угол, то Крестик сразу же должен занять центр, иначе он проиграет. Если Нолик начинает с боковой клетки, то обоим игрокам следует быть очень внимательными, ибо имеется много подводных камней. Однако Нолик может безопасно для себя свести дело к ничьей, а выиграть он может лишь по недосмотру Крестика.


110. Решение таково. Первый игрок может всегда выиграть при условии, что первый ход он сделает в центр. Хорошей вариацией данной игры будет условие, что первый игрок на первом ходу не имеет права ходить в центр. В этом случае второй игрок сразу же должен пойти в центр. Такая ситуация должна кончиться ничьей, но чтобы свести игру к ней уверенно, первый игрок обязан пойти на своем первом и втором ходах в два смежных угла (например, в 1 и 3). Тогда игра потребует огромного внимания с обеих сторон.


111. Сэр Исаак Ньютон в своей «Универсальной арифметике» показал нам, что мы можем разделить волов в каждом случае на две части – одна часть съедает прирост травы, а другая – накопленную траву. Первая часть меняется прямо пропорционально размеру поля и не зависит от времени; вторая тоже меняется прямо пропорционально размеру поля и, кроме того, обратно пропорционально времени. Со слов фермера мы определяем, что 6 волов съедают прирост травы на 10-акровом поле, а 6 волов съедают траву на 10 акрах за 16 недель. Следовательно, если 6 волов съедают прирост травы на 10 акрах, то 24 вола будут его съедать на 40 акрах.

Далее мы находим, что если 6 волов съедают накопленную траву на 10 акрах за 16 недель, то


12 съедают траву на 10 акрах за 8 недель,

48 съедают траву на 40 акрах за 8 недель,

192 съедают траву на 40 акрах за 2 недели,

64 съедают траву на 40 акрах за 6 недель.


Складывая полученные два результата (24 + 64), мы находим, что 88 волов могут прокормиться на 40-акровом лугу в течение 6 недель при условии равномерного роста травы в течение всего времени.


112. Нам известно, что пуля, убившая мистера Стэнтона Маубрея, попала в самый центр циферблата и мгновенно спаяла между собой часовую, минутную и секундную стрелки, так что они все стали поворачиваться как одно целое. Головоломка состояла в том, чтобы, исходя из взаимного расположения стрелок, определить точное время выстрела.

Нам известно также, а рисунок часов подтверждает это, что часовая и минутная стрелки отстояли друг от друга ровно на 20 делений, «треть окружности циферблата». Далее, в течение 12 часов часовая стрелка ровно 11 раз бывает на 20 делений впереди минутной и равно 11 раз – на 20 делений позади нее. Из рисунка видно, что нам следует рассмотреть лишь первый случай. Если мы начнем от четырех часов и будем все время добавлять по 1 час. 5 мин. и 27 3/11 сек., то получим все 11 расположений, последнее из которых придется на 2 час. 54 мин. 32 8/11 сек. Еще одно добавление указанной величины приведет нас вновь к четырем часам. Если теперь мы изучим циферблат, то обнаружим, что секундная стрелка находится приблизительно на 22 деления позади минутной, а если мы просмотрим все наши 11 случаев, то заметим, что лишь в последнем из них секундная стрелка занимает указанное положение. Следовательно, выстрел произошел ровно в 2 час. 54 мин, 32 8/11 сек., или без 5 мин. 27 3/11 сек. три. Это правильный и единственно возможный ответ к данной головоломке.


Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика