Читаем Кентерберийские головоломки полностью

– Имеется девять лунок, находящихся на расстоянии соответственно в 300, 250, 200, 325, 275, 350, 225, 375 и 400 ярдов друг от друга.[12] Если человек может всегда послать мяч строго по прямой и точно на одно из двух расстояний так, чтобы он либо шел прямо к лунке и проходил над ней, либо попадал в нее, то при каких расстояниях он сможет за наименьшее число ударов закончить всю игру?

– Проклятье мне, – заключил сэр Хьюг, – если я знаю кого-нибудь, кто решил бы эту задачу правильно, хотя она совсем не трудна.

Двумя очень хорошими расстояниями будут 125 и 75 ярдов, они позволяют закончить игру за 28 ударов, но это неправильный ответ. Сможет ли читатель закончить игру за меньшее число ударов при других расстояниях?

33. Попадание в кольцо. Другим любимым развлечением в замке Солвэмхолл было попадание в кольцо. На столбе крепилась горизонтальная перекладина, к концу которой на веревке подвешивалось кольцо (вы видите его на рисунке к этой главе). Перекладину можно было поднимать или опускать, так что кольцо устанавливалось на нужной высоте – обычно на уровне левой брови всадника. В задачу всадника входило, быстро проскакав около восьмидесяти шагов, пронзить копьем кольцо, которое легко отделялось и оставалось на копье как свидетельство искусства победителя. Сделать это было нелегко, и не удивительно, что всадники гордились добытыми кольцами.

На одном из происходивших в замке турниров Анри де Турне опередил Стивена Мале на шесть колец. Каждый из соперников сделал из своих колец цепь. Цепь де Турне имела в длину 16 дюймов, а цепь Мале – 6 дюймов. Поскольку размер колец был одинаковым и сделаны они были из металла толщиной в полдюйма, то сэрХьюг предложил маленькую головоломку, состоявшую в том, чтобы определить, сколько колец выиграл каждый из рыцарей.

34. Благородная дева. Однажды сэр Хьюг предложил компании, которая с полными кубками собралась вечером в зале замка, послушать историю о том, как, будучи юношей, он спас из заточения благородную деву, томившуюся в темнице, куда ее упрятал заклятый враг его отца. История была захватывающей, и когда хозяин, перечислив все опасности и ужасы Темницы мертвой головы, откуда ему удалось бежать с лишившейся чувств прекрасной девой на руках, окончил свой рассказ, раздались дружные возгласы:

– Это был славный подвиг!

– Меня ничто не остановило бы, даже угроза пыток! – заключил сэр Хьюг.

Затем он изобразил план 35 камер темницы и попросил присутствующих определить, в какой из них томилась дева. Сэр Хьюг сказал, что, начав свой путь из одной из внешних камер и пройдя сквозь каждую дверь один и только один раз, вы закончите его в той самой камере, где томилась дева. Можете ли вы найти эту камеру? Вам не удастся пройти сквозь каждую дверь только один раз, если вы не начнете путь с правильной внешней камеры. Попытайтесь проложить путь карандашом.

35. Мишень. На мишени для стрельбы из лука, которой пользовались в замке Солвэмхолл, не было концентрических кругов, как на нынешних мишенях, – она была покрыта довольно причудливым рисунком. Вы видите здесь эту мишень – плод трудов самого сэра Хьюга. Она довольно любопытна, поскольку, как легко заметить, сумма чисел, стоящих на любой из двенадцати ее прямых, равна 22.

Однажды, когда стрелки из лука несколько притомились, сэр Хьюг де Фортибус сказал:

– Доблестные лучники! Как говорится, только стрела дурака скора, но, думается мне, среди вас не найдется и одного, кто сумел бы расставить числа на мишени заново так, чтобы сумма чисел, расположенных вдоль каждой из двенадцати прямых, равнялась не двадцати двум, а двадцати трем.

Переставить числа от 1 до 19 так, чтобы сумма вдоль каждой прямой равнялась 23, – это захватывающая головоломка. Половина этих прямых совпадает со сторонами, а половина – с радиусами.

36. Окно темницы. Однажды сэр Хьюг весьма озадачил своего главного зодчего. Он подвел этого достойного человека к стене темницы и указал на окно.

– Думается мне, – сказал он, – что вон то квадратное окно имеет сторону в один фут, а узкие прутья делят его на четыре просвета со стороной в полфута.

– Воистину так, сэр Хьюг.

– Я хочу, чтобы повыше было сделано другое окно, у которого каждая сторона тоже равнялась бы одному футу, но его следует разделить прутьями на восемь просветов, у которых все стороны были бы равны между собой.

– Но, сэр Хьюг, – сказал озадаченный строитель, – я не знаю, как это сделать.

– Клянусь пресвятой Девой, – воскликнул сэр Хьюг с наигранным гневом. – Мое желание должно быть исполнено! Я буду считать тебя жалким ремесленником, если ты не сделаешь такое окно, как мне нужно.

Стоит отметить, что сэр Хьюг пренебрегал толщиной железных прутьев.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное