Читаем Кентерберийские головоломки полностью

58. Номера. «Мы очень смеялись над одной милой шуткой майора Тренчарда, веселого приятеля сквайра. Он написал кусочком мела номера на спинах восьми мальчиков, бывших на вечере». Затем он разделил ребят на две группы, как показано на рисунке: на одной стороне номера 1, 2, 3, 4, а на другой – 5, 7, 8, 9.

Можно заметить, что сумма номеров в левой группе равна 10, а в правой – 29. Головоломка майора состояла в том, чтобы разбить мальчиков на две новые группы так, чтобы суммы номеров в каждой группе были одинаковы. Племянница сквайра спросила, не стоит ли 6 вместо 5, но майор объяснил, что числа написаны верно, если на них правильно смотреть.

59. Сливовые пудинги. «Каждый, я думаю, хорошо знает, что сколько рождественских сливовых пудингов он попробует, столько счастливых дней будет у него в новом году. Один из гостей (его имени я не запомнила) принес лист бумаги, на котором были нарисованы 64 пудинга, и предложил нам показать, как можно попробовать эти пудинги с наибольшей быстротой».

Я не вполне понимаю эту прихотливую и довольно путаную запись головоломки. По-видимому, пудинги были расположены в правильном порядке, как на рисунке, и коснуться пудинга – это значит показать, что вы его попробовали. Вы должны просто поставить кончик карандаша на украшенный веточкой остролиста пудинг в верхнем углу и коснуться центров всех 64 пудингов, проведя 21 прямую. Вы можете двигаться вверх, вниз, по горизонтали, но не по диагонали и не по косой. Вы не должны касаться одного пудинга дважды, ибо это означало бы, что вы два раза отведали это лакомство, и так не безразличное для желудка. Особое обстоятельство заключается в том, что вы должны отведать дымящийся пудинг в конце вашего десятого прямолинейного прохода, а пудинг, расположенный внизу и украшенный остролистом, следует попробовать последним.

60. Под веткой омелы.[15] «На вечере присутствовал один вдовец, – гласит запись, – который пришел позже всех. Это был, несомненно, очень меланхоличный человек, ибо он просидел большую часть вечера в стороне ото всех. Потом мы услышали, что он тайно подсчитывал все поцелуи под веткой омелы. Честно говоря, я бы не потерпела, чтобы меня кто-нибудь так поцеловал, если бы знала, что за нами следит в это время недобрый глаз. Другие девушки, как только что сообщила мне Бетти Марчэнт, были тоже шокированы». Но, видимо, этот меланхоличный вдовец просто собирал материал для своей задачи.

Компания состояла из сквайра, его жены и шести других женатых пар, одного вдовца и трех вдов, двенадцати холостяков и мальчиков и десяти девушек и маленьких девочек. Далее оказалось, что каждый целовал всех остальных со следующими исключениями и дополнениями. Ни одно лицо мужского пола, разумеется, не целовало лиц мужского пола. Никто из женатых мужчин не целовал замужних женщин, за исключением своей собственной жены. Все холостяки и мальчики поцеловали всех девушек и девочек дважды. Вдовец не целовал никого, а вдовы не целовали друг друга. Головоломка состояла в том, чтобы выяснить, сколько поцелуев было совершено под веткой омелы. Предполагалось, что чувство милосердия не позволяло не ответить на каждый поцелуй, такой двойной поцелуй мы считаем за один.

61. Серебряные кубики. Последнюю выдержку из записей найдут, как мне кажется, интересной те читатели, которым предыдущие головоломки показались слишком легкими. Это твердый орешек, раскусить который следует попытаться лишь тем, кто считает, что у него крепкие интеллектуальные зубы.

«Учитель Герберт Спиринг, сын одной вдовы из нашего прихода, предложил простую с виду арифметическую головоломку, однако никто из присутствующих решить ее не сумел. По правде говоря, сама я даже и не пыталась это сделать после того, как студент из Оксфорда, очень образованный и сведущий в математике молодой человек, не сумел на нее ответить. Он уверял нас, что считает задачу вообще неразрешимой, но мне сказали, что решить ее все же можно, хотя я и не поручусь за это. Учитель Герберт принес два литых кубика из серебра, принадлежавшие его матери.

Он показал, что поскольку в любом направлении они имеют в длину 2 дюйма, то в каждом содержится по 8 кубических дюймов, а в обоих кубиках – 16 кубических дюймов серебра. Он хотел узнать, сможет ли кто-нибудь привести точные размеры двух кубиков, содержащих вместе 17 кубических дюймов серебра?» Разумеется, эти новые кубики должны иметь разные размеры.

Идея рождественского головоломного вечера, провозглашенная старым сквайром, кажется, была превосходной, ее можно было бы в наше время и возродить. Люди порой устают от «книжных» чаев и подобных им нововведений, которые служат для развлечения гостей на вечерах. Тех, кто лучше всего справится с предложенными головоломками, следует награждать призами.

<p>Происшествия в клубе головоломок</p>
Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное