Читаем Кентерберийские головоломки полностью

– Вы уверены, что марка в тринадцать с половиной пенсов находится в обращении?

– А разве нет?

– Это вполне в духе Профессора, – вставил Хокхерст. – В жизни не встречал большего «трюкача». Никогда не знаешь, добрался ли до сути его головоломки. И только тебе покажется, что ты нашел решение, как он обескуражит тебя какой-нибудь мелочью, которую ты упустил из виду.

– Когда вы решите эту головоломку, – сказал Профессор, – подумайте над другой, получше: наклейте английские марки так, чтобы сумма в каждых трех клетках на прямой была одинаковой, используя при этом столько марок, сколько вы пожелаете, лишь бы все они были разного достоинства. Это крепкий орешек.

69. Лягушки и бокалы.

– Что вы думаете вот об этом? – Профессор достал из своих вместительных карманов гротескные и очень яркие фигурки лягушек, улиток, ящериц и других созданий японского производства. Пока мы их разглядывали, он попросил официанта принести 64 бокала. Расставив их на столе в виде квадрата, Профессор положил на бокалы восемь маленьких зеленых лягушек, как показано на рисунке.

– Как видите, – сказал он, – эти бокалы образуют восемь горизонтальных и восемь вертикальных прямых, кроме того, здесь имеется двадцать шесть наклонных прямых, отмеченных пунктиром. Если вы скользнете взглядом по всем этим сорока двум прямым, то обнаружите, что никакие две лягушки не находятся на одной прямой.

Головоломка состоит в следующем. Три лягушки, меняя место, прыгают на три новых свободных бокала так, что при этом по-прежнему никакие две лягушки не оказываются на одной прямой. Какие прыжки они совершают?

– А вот… – начал Хокхерст.

– Я знаю, что вы хотите спросить, – прервал его Профессор – Нет, остальные лягушки не меняют первоначального положения, только три из них прыгают на незанятые бокалы.

– Но, конечно, решений здесь должно быть довольно много? – спросил я.

– Я был бы очень рад, если бы вы сумели их найти, – сухо улыбнулся Профессор. – Я знаю лишь одно – или, точнее, два, если считать симметричное решение, возникающее из симметрии исходного расположения.

70. Ромео и Джульетта. Некоторое время мы пытались расположить этих маленьких рептилий нужным образом, но безуспешно. Однако Профессор не сообщил свое решение, а вместо этого предложил нам небольшую задачку, которая на первый взгляд кажется детски простой, но которую никому не удается решить с первой попытки.

– Официант! – позвал он вновь. – Пожалуйста, уберите эти бокалы и принесите шахматные доски.

– Надеюсь, – воскликнул Григсби, – вы не собираетесь предложить нам одну из ваших ужасных шахматных задач! «Белые делают мат черным за 427 ходов, не меняя своих мест».

– Нет, это не шахматы. Видите этих двух улиток? Их зовут Ромео и Джульетта. Джульетта стоит на балконе, поджидая своего возлюбленного, но Ромео за ужином напрочь забывает номер ее дома. Квадраты изображают шестьдесят четыре дома, и влюбленный простак должен посетить каждый дом только по одному разу, прежде чем доберется до своей возлюбленной. Помогите ему это сделать с наименьшим числом поворотов. Улитка может двигаться вверх, вниз, поперек доски и вдоль диагоналей. Начертите мелом ее путь.

– Это, кажется, довольно просто, – сказал Григсби, проведя мелом по клеткам. – Посмотрите! Вот решение.

– Да, – сказал Профессор, – Ромео действительно добрался до цели, посетив каждый квадрат ровно по одному разу, но при этом он сделал девятнадцать поворотов, что не является наименьшим возможным их числом.

К удивлению, Хокхерст сразу же нашел решение. Профессор заметил, что эта головоломка как раз из тех, которые решаются либо с первого взгляда, либо не решаются и за шесть месяцев.

71. Второе путешествие Ромео.

– Вам здорово повезло, Хокхерст, – добавил он. – А вот гораздо более простая головоломка, ибо она допускает более систематичный подход; и все же может случиться, что вы битый час будете искать решение.

Поставьте Ромео на какую-нибудь белую клетку и сделайте так, чтобы он посетил по одному разу каждую другую белую клетку, сделав при этом наименьшее возможное число поворотов. На сей раз белую клетку можно посещать дважды, но улитка не должна ни проходить дважды через один и тот же угол клетки, ни заходить на черные клетки.

– Может ли Ромео уходить с доски, чтобы освежиться? – спросил Григсби.

– Нет, это ему не разрешается до тех пор, пока он не выполнит свое задание.

72. Лягушки-путешественницы. Пока мы тщетно пытались решить эту головоломку, Профессор в два ряда расставил на столе десять лягушек, как показано на рисунке.

– Это выглядит довольно занимательно, – сказал я. – Что это такое?

– Это небольшая головоломка, которую я придумал около года назад, и она понравилась тем, кто уже видел ее. Называется эта головоломка «Лягушки-путешественницы». Предполагается, что четверо из лягушек совершают прыжки на столе, после чего возникает такое расположение, при котором все лягушки образуют пять прямых, по четыре лягушки на каждой.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное