Читаем Кентерберийские головоломки полностью

Замечу, что у этой головоломки жало находится в хвосте. Равномерный рост травы – очень важная часть условия, хотя она сильно озадачит некоторых читателей. Трава, разумеется, предполагается равной длины и равномерной толщины в любом случае, когда скот начинает ее есть. При правильном подходе трудность не столь велика, как выглядит на первый взгляд.

112. Великая тайна Грэнгмура. Мистер Стэнтон Маубрей был очень богатым человеком. Известный миллионер жил в прекрасном старом особняке, нередко упоминаемом в английской истории, в Грэнгмур-Парке. Он был холост, много времени проводил дома и жил довольно тихо.

Согласно показаниям очевидцев, в день, предшествовавший той ночи, когда было совершено преступление, он получил со второй почтой одно письмо, содержание которого, по-видимому, его страшно поразило. В десять вечера он отпустил слуг, сказав, что должен просмотреть важные деловые бумаги и что просидит над ними допоздна. Никаких услуг ему не требовалось «Предполагалось, что после того, как все легли спать, он впустил кого-то в дом, поскольку один из слуг решительно утверждал, что слышал громкий разговор в очень поздний час.

На следующее утро, без четверти семь, один из слуг, войдя в комнату, нашел мистера Маубрея бездыханным – он лежал на полу с простреленной головой. Теперь мы подходим к одному странному обстоятельству этого дела. Пуля, пройдя сквозь голову убитого, попала в часы, которые стояли в кабинете. Она застряла прямо в середине циферблата, спаяв между собой три стрелки, ибо у часов была и секундная стрелка, которая обегала тот же циферблат, что и две другие. Но хотя три стрелки и соединились воедино, они могли поворачиваться как целое, и, к несчастью, слуги успели повернуть их несколько раз прежде, чем мистер Уайли Слаймэн прибыл на место. Но стрелки не могли двигаться порознь.

Опрос, проведенный полицией в окрестности, привел к аресту в Лондоне подозрительного человека, которого опознали несколько свидетелей, утверждавших, что видели его в тех краях днем накануне преступления. Однако с несомненностью было установлено, в какое именно время он роковым утром уехал на поезде. Если преступление было совершено после его отъезда, то невиновность арестованного была бы доказана, так что оказалось крайне важным установить точное время пистолетного выстрела, звука которого никто в доме не слышал. На рисунке точно показано, в каком именно положении были найдены стрелки часов. Мистера Слаймэна полиция просила напрячь все свои способности и привлечь весь свой опыт, но, как только ему показали часы, он улыбнулся и сказал:

– Все крайне просто. Обратите внимание, что все стрелки находятся на равных расстояниях друг от друга. Так, часовая стрелка ровно на двадцать минут отстоит от минутной, то есть на треть окружности циферблата. Вы большое значение придали тому факту, что слуги крутили спаянные стрелки, но их действия не играют роли: спаянные стрелки свободно сидели на оси и неминуемо должны были сами повернуться приходя в положение равновесия. Дайте мне чуть-чуть подумать, и я скажу вам точное время выстрела.

Мистер Уайли Слаймэн достал из кармана блокнот и начал что-то писать. Через несколько минут он передал инспектору полиции листок бумаги, на котором значилось точное время преступления. Оказалось, что задержанный был старым врагом мистера Маубрея; его обвинили на основании других открывшихся фактов, но прежде чем понести наказание, он подтвердил, что время, указанное мистером Слаймэном, соответствует действительности.

Сможете ли вы указать это время?

113. Деревянный брусок. У экономного плотника был деревянный брусок в 8 дюймов длиной, 4 дюйма шириной и 3 3/4 дюйма толщиной. Сколько кусков размером 2 1/2 X 1 1/2 X 1 1/4 дюйма можно из него вырезать? Все дело в том, как вы будете их вырезать. У большинства людей отходы превзойдут необходимую величину. Сколько кусков сможете вы получить из бруска?

114. Бродяги и бисквиты. Четыре веселых бродяги купили, заняли, нашли или добыли каким-то способом ящик бисквитов, который они решили поделить между собой поровну на следующее утро за завтраком. Ночью, когда бродяги крепко спали под ветвистым деревом, один из них подобрался к ящику, съел ровно четверть всех бисквитов и один лишний бисквит бросил собаке. Ближе к утру проснулся второй бродяга, ему в голову пришла та же мысль съесть четвертую часть бисквитов, а лишний бисквит он тоже бросил собаке. Третий и четвертый бродяги по очереди проделали то же самое, взяли четверть того, что нашли, и кинули по лишнему бисквиту собаке. Утром все четверо поделили между собой поровну остаток и вновь отдали лишний бисквит животному. Каждый заметил недостачу, но, думая, что он один тому виной, ничего не сказал. Какое наименьшее число бисквитов могло быть в ящике первоначально?

<p>Задачи на шахматной доске</p>

От сильного порыва ветра каминная труба сорвалась с крыши и рухнула прямо под ноги случайному прохожему. Он сказал спокойно:

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное