Масштабный фактор в случае закрытой Вселенной — это циклоида, то есть кривая, описываемая точкой на окружности, которая, словно колесо, катится без скольжения, как показано на рисунке 3. Как мы можем увидеть, в этой функции ноль соответствует Большому взрыву, затем функция растет до максимального значения, после чего расширение превращается в сжатие и, наконец, в Большое сжатие. Колесо может сделать бесконечное число оборотов, и циклоида будет бесконечной. Но мы не знаем, является ли Вселенная бесконечной последовательностью больших взрывов и больших сжатий. Известно лишь, что во время отскока при Большом сжатии релятивистские формулы не выполняются. Мы никак не можем описать Вселенную подобной плотности и температуры.
Но во Вселенной не всегда доминировала материя. Природа Вселенной менялась за время ее существования, и сегодня известно, что ранее а = 10-4
во Вселенной доминировало излучение. Это была сияющая Вселенная: плотность энергии излучения была больше энергии покоя материальных частиц. В ту эпоху а α t-½, и мы можем нарисовать кривую a(t) для большего временного интервала (рисунок 4).Но во Вселенной будущего доминирует не материя, не излучение, а космологическая постоянная Л, или, в более общей форме, темная энергия. В этом случае в будущем Вселенная будет вести себя как Вселенная де Ситтера. Это была первая опубликованная модель Вселенной будущего. В ней
a(t) α еKt,
так что мы можем постепенно реконструировать эволюцию Вселенной (рисунок 5). Когда придет будущее, описанное де Ситтером? Можно сказать, что оно уже начинается.
Мы не будем подробно анализировать инфляционную эру, так как эти модели разрабатывались уже после смерти Хаббла, но для того чтобы дать полную картину, скажем, что в первоначальную эру расширение можно было описать с помощью экспоненциальной функции, как в предыдущей формуле. При этом мы можем описать историю расширения Вселенной, показанную на рисунке 6. Эта сложная схема с частыми качественными изменениями отражает множество исследований, проводимых в течение последнего века.
Также мы можем начертить график функции H(t). На рисунке 7 (следующая страница) мы видим, что Хаббл смог наблюдать только небольшой временной интервал, который является практически единственным доступным для наблюдения. В действительности у нас есть другой маленький интервал, при котором 7 примерно равно 1100, когда произошел выброс реликтового излучения.
Кроме функции a(t) нам интересно знать, как менялась плотность Вселенной. Мы представим это изменение только для критической Вселенной Эйнштейна — де Ситтера, так как именно она лучше всего соответствует современным данным (и современные теории инфляции для первоначального времени подтверждают ее). На рисунке 8 представлена плотность в зависимости от времени критической вселенной, р(t) α t2
, и соответствующая эпохе темной энергии.Также для полноты картины, не претендуя на реальное описание (поскольку это не является темой нашей книги), рассмотрим, как менялась температура Вселенной. На рисунке 9 представлена T(t). Примерно для z < 10-10
Вселенная в основном содержала нейтрино, электроны, позитроны и фотоны. Обычная материя (барионы, такие как протоны и нейтроны)и темная материя присутствовали, но в меньшем количестве.