[6. ] Это учение невозможно усвоить, если не помнить основного свойства всякого оформления и ограничения, это — превращение оформляемого и ограничиваемого в нечто имеющее как бы объем, в нечто количественное и, следовательно, дробное. В общей диалектике мы приводим избитый пример с кругом или шаром: пока не проведена периферия и пока не замкнута линия, очерчивающая форму круга или шара, еще нельзя говорить ни о каком круге или шаре; до этих пор он остается только в идее, а не в реальности. Но стоит только провести окружность круга, как получается возможность понимать круг как нечто делимое, ибо самое наличие формы есть уже тем самым наличие количественности, объемности и измеряемости.[154]
Точно так же и наше алогическое становление — пока оставалось безграничным и неоформленным, оно оставалось все еще не осуществленным, не положенным, все еще, строго говоря, лишенным возможности находиться в дроблении — раздельности. Правда, мы уже заговорили о наличии скученного множества становящихся точек, но будем помнить, что 1) это стало возможно только благодаря введению принципа гипостазирования (или развернутого утверждения) в стадию чистого становления. Сделали мы это, однако, не в целях окончательного ответа на поставленный вопрос, но в целях постепенного приближения к этому ответу. Получивши становление как синтез бытия и инобытия, мы стали полагать и утверждать само становление и на первых порах констатировали это утверждение на протяжении самого становления, внутри его развертывающейся массы и оставили в стороне становление в целом. Тем не менее последняя диалектическая ступень в одинаковой мере необходима и как принцип, заложенный уже в указанном частичном гипостазировании (если положено внутреннее содержание вещи, то должна быть положена и она сама), и как позиция, непосредственно приводящая к категории бесконечности.
а) Становление есть неразличимая и ускользающая сплошность алогического смысла. Мы полагаем теперь само становление, превращаем его самого в некую смысловую субстанцию. Это приводит нас от становления к ставшему, т. е. к его ограничению и как бы к некоей оформленной и потому конечной, ставшей вещи. Но куда же девается стихия становления? Лишенная возможности растекаться во все концы и быть неуловимой, ускользающей, она начинает проявлять себя внутри положенных и очерченных нами границ, но здесь она приводит по необходимости к дроблению, так как отныне мы уже в пределах формы и ярко очерченных размеров, и уже не может [быть] простого и определенного растекания, как в чистом становлении. Однако становление есть всегда становление; и потому, хотя оно и дает здесь дробление, дробящиеся части настолько близко подходят одна к другой, что расстояние между ними делается исчезающе малым. Таким образом, мы получаем сразу и момент всего (очерчивание границы дает нам возможность говорить именно о всех частях целого, о всем и всецелом содержании смысла), и момент неисчерпаемости этого «всего», а соединение «всего» с «неисчерпаемостью», с неисчерпаемой полнотой всего и есть подлинная бесконечность.
b) Необходимо помнить выведенные нами раньше категории целого и дробного числа, чтобы соблюсти правильную перспективу в оценке категории бесконечности. Целое число, в отличие от числа просто, содержит в себе свое внутреннее инобытие. Это инобытие было положено в нем субстанциально, т. е. как такое, вне своих внутренних, уже чисто инобытийных, различий, и, кроме того, оно было отождествлено с самим числом. Целость и есть тождество себя с самим собою; число противопоставляется самому себе и, не переходя ни в какие дальнейшие различия, отождествляется с самим собою. Далее мы перешли к дробному числу. Дробное число тоже базируется на внутреннем инобытии числа, на различии и тождестве его с самим числом. Но здесь берется уже не субстанциальная твердыня и нетронутость внутреннего инобытия, но переход этого инобытия в дальнейшее инобытие, так что подобно тому, как «число вообще» противопоставляет себя своему внутреннему инобытию, так это внутреннее инобытие противопоставляет себя своему собственному внутреннему инобытию. Противопоставить что–нибудь чему–нибудь (например, ему же самому)— значит отличить его от этого «что–нибудь», а отличить что–нибудь — значит дать ему очертание границы и формы; а дать очертание чему–нибудь — значит превратить его в нечто количественное и сообщить ему свойство быть дробимым (принципиально или фактически). Отсюда вывод, что «число вообще», вступая в различие с инобытием (в данном случае со своим же собственным внутренним инобытием), делается принципиально дробимым, т. е. целым, а целое число, вступая в различие с инобытием (т. е. опять–таки со своим же собственным внутренним бытием), рассыпается на различествующие друг от друга моменты, т. е. становится дробным. Но все ли возможности исчерпаны в том инобытии, которое в своем субстанциальном отождествлении с «числом вообще» дало целое число, а в своем расчлененно–инобытийном отождествлении с «числом вообще» дало дробное число?