Под логикой содержания, конкретно говоря, надо подразумевать логику не объемов понятия, а признаков понятия. Если подойти к понятию с точки зрения его признаков и ограничить операции над ним операциями с его признаками, то получается ряд интересных построений, вступающих в резкий антагонизм с построениями объемными. Так, напр., суждение с точки зрения логики содержания приходится принимать не в виде включения подлежащего в объем сказуемого, но в виде включения сказуемого в содержание подлежащего. «Снег бел» — это значит не то, что «снег» включается в число белых предметов, но то, что признак белизны включается в число признаков «снега». С точки зрения объемной логики нельзя делать того заключения по четвертой фигуре силлогизма, которое было бы наиболее естественным: «Алмаз—углерод, углерод горюч; следовательно, алмаз горюч», в то время как с точки зрения логики содержания этот силлогизм вполне правилен, поскольку здесь мы находим только последовательную цепь признаков, вносимых в первоначальное понятие «алмаз». И т. д. и т. д. Словом, везде тут идет речь о возникновении и соединении признаков, об образовании ими понятия и о взаимоотношении понятий, рассматриваемых только лишь как совокупность признаков.
Допускает ли такая признаковая интерпретация понятия применение метода бесконечно–малых? Обязательно допускает, и даже требует. И мы его провели выше в одном из самых центральных мест нашего исследования. Сейчас только надо это тщательно отграничить от объемной интерпретации и не давать здесь такого нерасчлененного изложения, которое получалось у нас выше (ввиду преждевременности этого различения для предыдущего этапа нашего исследования).
Что такое интеграл с этой новой точки зрения «логики содержания»? Ясно, это уже не родовое понятие как предел обобщения видов, но понятие как предел суммы его признаков. Признаки понятия с этой точки зрения должны мыслиться наподобие тех «элементарных прямоугольников», из которых математики конструируют площадь криволинейной трапеции: признаки эти должны постепенно сужаться, а число их должно постепенно расти; и, когда каждый из них станет бесконечно малым, а общее число их станет бесконечно большим, тогда, суммируя их, мы и переходим к пределу, который есть искомый нами интеграл, т. е. понятие как предел суммы признаков, как предельная совокупность признаков.
Чем окажется при такой точке зрения производная? Как и в объемной логике, она здесь есть только принцип становления понятия, или принцип его развертывания; если угодно, это есть принцип, или основание, его деления. Однако речь тут пойдет уже не об объемном делении, т. е. не о таком, откуда мы получили бы виды данного понятия. Развертывание здесь должно мыслиться содержательно; это есть основание деления, или становления, по содержанию, становления признакового. Мы ведь уже встречались с тем фактом, что одно и то же понятие может иметь разные системы существенных признаков в зависимости от той или иной (объективно обоснованной) точки зрения. Но даже если бы данное понятие обладало и единственной системой существенных признаков, все равно эта последняя определялась бы своим вполне определенным признаком. Пусть вода определяется как Н20. Это значит, что в основу ее определения положен принцип химического соединения. Пусть она определяется с точки зрения температуры своего кипения и замерзания. Это есть определение с физической точки зрения. И т. д. Ясно, следовательно, что всегда существует тот или иной принцип развертывания понятия по его содержанию, основание подбора и разделения его признаков. Очевидно, если в объемной логике основание деления понятия мы соединяли с производной математического анализа, то для «логики содержания» производной понятия является тоже принцип развертывания этого понятия, но развертывания содержательного. Это принцип подбора и разделения признаков данного понятия.
Но тогда должно стать ясным и что такое дифференциал понятия в «логике содержания». Если в объемной логике это есть видовое различие, то здесь, очевидно, это есть каждый отдельный признак понятия. Как там все виды подчиняются одному принципу деления понятия, так здесь все признаки понятия подчиняются своему единому принципу. И если принцип этот есть предел, а то, что ему подчинено, непрерывно и бесконечно стремится к этому пределу, то признаки тут тоже есть нечто текучее, сплошно стремящееся, так что один признак, несомненно, переходит в другой; и надо его закрепить в этой его бесконечно малой текучести, чтобы о нем можно было говорить как о чем–то определенном. Это и есть дифференциал понятия, определяемого в «логике содержания» через совокупность признаков. Это отдельный признак, данный со всей той бесконечной текучестью, которая нужна ему для стремления к пределу, и со всей той конечной определенностью, без которой он вообще не мог бы быть чем–нибудь. Это и есть в данном случае дифференциал понятия.