Читаем Хаос и структура полностью

Что такое постоянная величина и что такое переменная величина, это известно уже из элементарной математики. В анализе эта пара понятий играет, однако, гораздо большую роль. Возьмем, напр., площадь треугольника. Из элементарной геометрии известно, что эта площадь равняется половине произведения основания на высоту. Эта формула — «половина произведения основания на высоту» — нисколько не зависит от величины самого основания и самой высоты. Самая эта связь основания и высоты для выражения площади вполне постоянна. Еще ярче, однако, антитеза постоянной и переменной величин в случае, когда выставляется теорема: «сумма углов треугольника равняется двум прямым». Сколько бы ни увеличивать и ни уменьшать отдельные углы треугольника, сумма их все равно остается равной двум прямым. Ясно, что величины отдельных углов треугольника суть переменные величины и сумма всех трех сторон треугольника есть величина постоянная. В физике устанавливается закон о том, что произведение давления газа на его объем есть величина постоянная. Следовательно, если меняется давление, то соответствующе меняется объем газа, произведение же обеих величин никогда не меняется. Ясно, что объемы и давления суть в этом законе переменные величины, их же произведение—постоянная величина.

Вдумываясь в существо этих двух категорий, мы отчетливо видим, что отличие их от величины просто, от величины вообще заключается в том, что тут «величина вообще» содержит в себе еще особый слой, слой внешней характеристики. Постоянная и переменная величина есть, прежде всего, величина просто, а во–вторых, еще утверждается, что эта величина имеет такое–то или такое–то значение. Это значение — чисто внешне в отношении величины, взятой самой по себе. В одном случае угол треугольника равен 30°, другой раз—45°, третий раз — 60° и т. д. и т. д. Эта величина может быть какой угодно (имея в виду общую сумму углов, равную двум прямым). Размеры угла, ясно по самому смыслу, не имеют никакой связи с самим понятием угла. Поэтому размерность есть нечто внешнее в отношении самого понятия угла. И на этом основании мы и говорили, что постоянная и переменная величины есть внешнее инобытие числа и эта внешность, конечно, к тому же вполне отождествлена с непосредственно данным числом, с числом самим по себе.

Но интереснее всего то, что получается от соединения этих двух категорий—постоянной и переменной величин. Диалектический синтез всегда особенно интересен; он часто таит в себе полную неожиданность. Так, из синтезирования целого и дробного получалась (быть может, с первого взгляда довольно неожиданно) категория бесконечности. Что же получится из синтезирования постоянной и переменной величин? Какова та категория, в которой обе эти категории совпадают совершенно, точно сливаясь в полную неразличимость на фоне вполне новой и в них не содержащейся конструкции?

Такой категорией является непрерывность.

Подобно тому как бытие и небытие объединяются в становление, так и постоянная величина с переменной объединяются в непрерывной величине. Непрерывная величина, во–первых, есть нечто постоянное. В самом деле, самый смысл непрерывности заключается в том, что каждый ее момент совершенно одинаков со всяким предыдущим моментом. Непрерывная величина потому и «не прерывается», что она везде одинаковая, что она не меняется, что она всецело постоянная. Таким образом, постоянство, несомненно, входит в категорию непрерывности в качестве конститутивного момента; непрерывность без него немыслима. Однако также ясно, во–вторых, что непрерывность требует для себя и момента изменения. Это значило бы, что вся непрерывность свернулась бы в одну точку. Допустим, что в непрерывности нет изменения. В то же время, однако, в непрерывности мыслится некий процесс. Непрерывность есть именно процесс, т. е. движение, изменение; но это такой процесс, в котором все моменты процесса сливаются в одно и то же, в один и тот же момент. Если различать в каждом моменте самый факт этого момента, субстанцию, и, с другой стороны, его смысловую, идейную сторону, то необходимо сказать, что по факту, по субстанции, все эти точки абсолютно разделены, внеположены, находятся одна вне другой; с точки же зрения смысла, идеи все они суть нечто одно, совершенно одно, неразличимое тождество и единство. В этом и заключается тайна непрерывности: в ней дано фактическое движение[225], движение по факту, т. е. разнообразие, бесконечное фактическое разнообразие отдельных точек; и с другой стороны, тут дано полное смысловое идейное отождествление всех бесконечных точек, как бы они ни возникали и сколько бы их ни возникало.

Непрерывная величина есть тождество постоянной и переменной величин.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное