Читаем Хаос и структура полностью

Именно, нас ведь интересуют не приращения вообще, но бесконечно–малые приращения и не процесс вообще, но именно алогическое становление. Мы раньше уже видели, что в понятии бесконечно–малого дано не просто изменение величины, но изменение самого изменения, становление изменения, почему оно не просто налично тут как таковое, но оно дает все меньшие и меньшие результаты, оно все меньше и меньше оказывается изменением. Сама категория изменения тут, очевидно, вовлечена в становление.

И только при этом условии переменная величина может быть бесконечно–малой. Она должна иметь своим пределом нуль—только тогда она действительно бесконечно мала.

Применяя это к нашему рассуждению, мы должны х считать бесконечно–малым. х должно стремиться к нулю, оно должно иметь своим пределом нуль. Но тогда существенно меняется вся картина выставленного выше отношения . Именно, Ах становится все меньше и меньше. Соответственно и у должно становиться все меньше и меньше. Чтобы конкретно представить себе новые значения аргумента в связи с уменьшающимся приращением х, вычислим соответственно новые значения функции, уменьшающиеся приращения функции, а также и отношение мы получим примерно след. табличку.

Начальное значениеXНовое значениеПриращ. yННачальное значениеУНовоеПриращ. у 
 X  значение  
    у  
341101717
 3,90,9 16,216,216,9
 3,80,8 15,445,446,8
 3,70,7 14,694,696,7
 3,60,6 13,903,906,5
 3,0010,001 10,0060010,0060016,001

Пусть у нас имеется функция

у = х2+ 1

и пусть начальное значение x: будет 3. Тогда начальное значение у=32+1 = 10. Возьмем теперь какое–нибудь новое значение x, напр. 4, тогда y =42+1 = 17. В первом случае приращение будет

. = 4 — 3 = 1,

во втором случае приращение будет

у— 17— 10 = 7.

Следовательно, = =7.

Будем теперь постепенно уменьшать x, придавая ему значения 0,9; 0,8; 0,7 и т. д. Соответственно будет меняться и также у, а стало быть, и . Мы действительно видим, что принимает все меньшие и меньшие значения: 7; 6,9; 6,8; 6,7 и т. д. Спрашивается: до каких же пор будет это отношение уменьшаться? х стремится к нулю. К чему же стремится ?

Чтобы ответить на этот вопрос, представим вышеприведенное выражение — при помощи данной формулы у=2 +1. Именно, взявши приращенную функцию, получаем:

у+у=(х+х)2+1 = 2 + 2+2 +1,

откуда

у = х2 + 2хх + (х)2+1—(х2 +1) =

=2+2+2+1 — 2 — 1 = 2х х+(х)2.

Следовательно,

Итак, чтобы судить о том, к чему стремится, достаточно полученное выражение 2х+х взять в пределе, т. е. в условии стремления х к нулю. Очевидно, если Ах стремится к нулю, то стремится к 2х, так как х, как стремящееся к нулю, стремится просто отпасть. Значит, если начальное значение аргумента у нас было 3, то предел отношения будет равен, очевидно, 2–3 = 6.

И действительно, просматривая в нашей табличке значения , мы видим, что оно постепенно уменьшается, но не становится меньше 6. Если бы мы взяли, напр., х = 0,001, то, как показывает вычисление, оказалось бы равным 6,001. Легко проверить это, подставляя все меньшие и меньшие х и получая отсюда все меньшие и меньшие , но не становящиеся меньше 6. 6—это предел, к которому стремится если брать функцию у=х2+1 при начальном значении х=3.

На этом простейшем примере отчетливо видно, какую форму приобретает взаимоотношение и у, когда оно начинает действовать не само по себе, но в своем инобытии, в своем становлении, когда они сплошно и неизменно растут или вообще меняются.

Предел этого отношения , когда х стремится к нулю, и есть производная, т. е. функция, «произведенная» от у, которую называют первообразной функцией. Следовательно, производная данной функции есть предел отношения приращения этой функции к приращению аргумента, когда это приращение аргумента стремится к нулю как к своему пределу.

Не будем забиваться в абстрактные дебри, как это любят делать математики, давая это понятие в дифференциальном и интегральном исчислении. Также недостаточны для понимания производной и те геометрические и механические привнесения и толкования, которыми математики уснащают свои руководства, думая на них конкретизировать это отвлеченное понятие. Надо, однако, еще до этих применений и толкований научиться понимать эту замечательную категорию, понимать всю ее жизненную и, следовательно, философскую конкретность.

Что такое производная? Для понимания этой основной категории математического анализа надо с максимальной отчетливостью представить себе разницу между бытием и инобытием или, точнее, между бытием и становлением. Если эта разница усвоена нами с достаточной отчетливостью, тогда необходимо достигнуть четкости еще в представлении того, как совершается стремление к пределу. Если эти две вещи усвоены, то логический состав производной будет ясен сам собой.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное