Читаем Хаос и структура полностью

Арифметическое число есть такая совокупность элементов, в которой сколько актов полагания, столь же велика и сама совокупность. Вся совокупность дана сразу, самотождественно, но в ней [есть и] некое определенное количество разных изолированных актов полагания. И сколько оказалось таких актов полагания, такова и есть количественная значимость этого единого и общего акта полагания цельной совокупности. В геометрическом инобытии мы находим иное отношение. Здесь замолкает количественная значимость совокупности — так же, как это бывает и со всякой идеей, когда она переходит в инобытие. Перейти в инобытие — значит стать иным себе, забыть о себе, стать не тем, что было раньше. В геометрической совокупности забыта арифметическая значимость совокупности; она превращена тут в нечто неразличимое. В арифметической совокупности мы ясно различали отдельные элементы; и эта ясность была так велика, что элементы такой совокупности мы назвали выше изолированными. В геометрической совокупности погасла эта изолированность и все элементы слились в одно неразличимое тождество. Тем не менее акты полагания этих слившихся элементов тут совершенно различны, и их очень много, их бесконечное количество. В арифметической совокупности сколько было актов полагания (элементов), столь велика была и совокупность этих элементов. В геометрической же совокупности вовсе не столько различимых элементов, сколько актов полагания. Актов полагания тут бесконечное количество, а различимых моментов нет ни одного.

Вот это–то и значит, что тут мы имеем дело с пространством или, говоря вообще, с континуумом. Континуум как раз и есть бесконечно большое количество актов полагания, но в то же время — полная их взаимная неразличимость. Это–то и есть пространство, т. е. распро–стертость: актов полагания, или элементов, очень много, а в смысловом отношении они совершенно неразличимы; по своему факту такая совокупность бесконечно велика, а по своему смыслу она есть совершенный нуль, полная неразличимость и самотождество.

Такое положение дела, очевидно, есть диалектическая противоположность арифметическому числу. В последнем число элементов определенно и соответственно определяется их совокупностью; в геометрической же совокупности число элементов неопределенно велико, а на определенность самой совокупности это ровно никак не влияет, так что она остается по смыслу своему без всякого определения.

Отсюда становится ясной и функция рассматриваемой нами категории самотождественного различия в инобы–тийной геометрической совокупности. Эта категория, действуя здесь в инобытии, очевидно, различает и отождествляет элементы совокупности в их инобытийном положении, т. е. различает и отождествляет не их самих, но их инобытийные корреляты. Что тут значит «различает»? Это значит различает не их самих (сами они, как мы знаем, остаются в континууме неразличимыми), но только акты их полагания, поскольку самый акт полагания необходимо инобытиен в отношении того, что именно полагается. А что значит, что эта категория «отождествляет»? Это значит, что она отождествляет не самые элементы (самые элементы были бы всегда различны, и отождествление их в единстве их совокупности никогда не помешало бы этой совокупности с абсолютной точностью отражать на себе все различие элементов); и, отождествляя не самые элементы, категория самогождествен–ного различия отождествляет только их инобыгийный коррелят, т. е. отождествляет их только так, как способно инобытие; происходит не столько отождествление, сколько объединение, гак как инобытие но самому существу своему не способно на абсолютное тождество.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное