Повторение процедуры неопределенное число раз и постоянная проверка того, бесконечен ли ее результат, напоминает процессы обратной связи в повседневной жизни. Представьте себе, что в аудитории вы размещаете микрофон, усилители и громкоговорители. Вас беспокоит, не возникнут ли пронзительные завывания при обратной связи. Что это такое? Если микрофон достаточно чувствителен, усиленный громкоговорителем звук достигнет его и породит бесконечные, еще более громкие отклики. С другой стороны, если звуки слабы, они просто затухнут. Чтобы построить модель процесса обратной связи, необходимо выбрать начальное число, умножить его на самое себя, затем вновь умножить получившееся число на самое себя и т. д. Мы обнаружим, что большие числа быстро приведут к бесконечности: 10, 100, 10 000… Маленькие же числа стремятся к нулю: 1/2 , 1/4 ,
1/ 16… Чтобы построить геометрическое изображение, мы определим совокупность численных значений, при подстановке которых данное уравнение не стремится к бесконечности. Примем во внимание точки на прямой от нуля и далее. Если точка ведет к эффекту обратной связи (визгу в микрофоне), закрасим ее белым цветом, а все другие — черным. Вскоре у нас появится изображение в виде линии, черной от нуля до единицы.При исследовании одномерного процесса нет необходимости прибегать к эксперименту. Достаточно просто установить, что числа, которые больше 1, ведут к бесконечности, чего нельзя сказать о всех остальных. Но для изучения формы в двух измерениях комплексной плоскости с помощью процесса итерации знать уравнение, как правило, недостаточно. В отличие от традиционных геометрических форм, таких как окружности, эллипсы и параболы, система Мандельбро не допускает никаких сокращенных вариантов. Определить, какая форма подходит к каждому конкретному уравнению, удается только методом проб и ошибок. Именно он привел исследователей к неизведанным землям, скорее путем Магеллана, чем дорогой Евклида.
Такое объединение вселенной форм с миром чисел говорило о разрыве с прошлым. Новые геометрии всегда начинаются с того, что кто-нибудь пересматривает базовый постулат.
Джулиа, Фато, Хаббард, Барнсли, Мандельбро — все эти математики изменили правила создания геометрических форм. Картезианский и Евклидов методы превращения уравнений в кривые знакомы любому, кто изучал геометрию в средней школе или находил точку на карте по двум координатам. В стандартной геометрии кроме уравнения необходим также и набор чисел, которые ему
До компьютерной эры даже Джулиа и Фато, понимавшие, какие возможности таит в себе новый тип построений, не могли превратить его в науку. С появлением вычислительных машин «геометрия проб и ошибок» получила право на жизнь. Хаббард изучил Ньютонов метод, последовательно рассчитывая поведение точек. Мандельбро первоначально рассматривал свою систему аналогичным образом, применяя компьютер для перехода от одной точки на плоскости к другой. Конечно, он исследовал не все точки — время и возможности компьютера ограничены. Ученый использовал решетку точек, нечто вроде координатной сетки. Более частая решетка давала более точную картину, но требовала более трудоемких вычислений. Впрочем, рассчитать систему Мандельбро довольно просто. Весь процесс сводится к итерации в комплексной плоскости выражения