Основное предположение Барнсли звучало так: множества Джулиа и другие фрактальные формы, хотя и считаются по справедливости итогом детерминистского процесса, обладают второй равнозначной ипостасью как предел неупорядоченного процесса. Ради сравнения ученый предложил представить, к примеру, карту Великобритании, нарисованную мелом на полу комнаты. Топографу со стандартным набором инструментов будет весьма непросто измерить площадь всех изгибов, хотя бы тех же фрактальных береговых линий. Но вообразите, что мы подбрасываем в воздух одно за другим зернышки риса, которые в беспорядке ложатся на пол, а затем подсчитываем количество зерен, оказавшихся в пределах контура карты. Со временем результат начинает приближаться к площади интересующих нас форм, как предел случайного процесса. Говоря на языке динамики, формы Барнсли оказались аттракторами.
«Игра хаоса» использовала фрактальные характеристики некоторых изображений, то их качество, что они могли быть созданы из малых копий основной картины. Выбор правил для случайной итерации позволяет уловить основополагающую информацию о той или иной форме, а сама итерация правил выдает эти же данные обратно независимо от масштаба. В указанном смысле чем более фрактальной является форма, тем более простыми окажутся соответствующие принципы. И Барнсли быстро обнаружил, что может воспроизвести все ставшие уже классическими фракталы из книги Мандельбро. Техника последнего представляла собой бесконечную последовательность построений и совершенствований: скажем, для создания снежинки Коха или ковра Серпински нужно, удалив линейные сегменты, заменить их точно определенными фигурами. Применяя вместо этого «игру хаоса», Барнсли создавал изображения, казавшиеся вначале лишь расплывчатыми карикатурами, но со временем вырисовывавшиеся все более четко. Вместо процесса усовершенствования, в котором не возникло необходимости, использовался лишь один набор правил, с помощью которого в итоге и воплощалась нужная форма.
Барнсли и его коллеги начали безудержно конструировать всякие изображения, многообразные формы, напоминавшие изогнутые капустные листья, налет плесневых грибков и брызги грязи. Ключевым стал теперь вопрос о том, как повернуть процесс вспять, как вывести набор правил для заданной формы. Ответ, названный ученым «теоремой коллажа», оказался настолько простым, что заставлял подозревать подвох. Для начала следует изобразить на экране дисплея форму, которая вас интересует. (Барнсли, будучи давним любителем папоротников, выбрал для первых опытов один из них.) Затем, используя «мышь» в качестве указки, нужно устлать первоначальную форму ее уменьшенными копиями, позволяя им, если необходимо, чуть накладываться друг на друга. В высшей степени фрактальную фигуру можно легко покрыть ее копиями, с менее фрактальной дело пойдет сложнее, но как бы то ни было, в принципе каждую форму можно устлать ее миниатюрными копиями.
«Если образ достаточно сложен, правила также будут непростыми, — пояснял Барнсли. — С другой же стороны, если объект заключает в себе скрытый фрактальный порядок — основное наблюдение Бенуа заключается в том, что множество явлений в природе не обладают им, — тогда с помощью нескольких правил его можно расшифровать. В данном случае модель окажется более занимательной, чем та, что создана при помощи Евклидовой геометрии. Известно же, что, взглянув на краешек листа, мы не увидим прямых линий». Его первый папоротник, созданный на небольшом персональном компьютере, точно соответствовал изображению в книге, хранимой ученым с детских лет. «Этот образ ошеломлял своей достоверностью. Любой биолог без труда идентифицирует его».
Барнсли с удовлетворением констатировал, что в некотором смысле природа играет в «игру хаоса», только на свой лад. «Информации, которую несет в себе спора, хватает лишь для кодирования одного вида папоротника, — замечал ученый. — Таким образом, существует предел его совершенству. Не удивительно, что нам удается отыскать равноценную краткую информацию для описания папоротников. Было бы странно, если бы дела обстояли иначе».