Впрочем, сам Уинфри не сказал бы, что «пошел дальше». Для него объект изучения не изменился — другой химизм, но та же динамика. Так или иначе, после того как он стал невольным и беспомощным свидетелем внезапных смертей, вызванных сердечной недостаточностью, сердце сделалось для него предметом особого интереса. Однажды на его глазах во время летнего отпуска умер его родственник. Во второй раз в пруду, где купался Уинфри, утонул мужчина. Почему же неизменный ритм, заставляющий сердце то расслабляться, то напрягаться два миллиарда (или более) раз на протяжении жизни, вдруг становится таким неуправляемым и фатально неистовым?
Уинфри поведал историю о своем предшественнике, Джордже Майнсе, которому в 1914 г. было 28 лет. В лаборатории монреальского Университета Макгилл Майнс соорудил небольшое устройство, способное передавать сердцу малые, четко регулируемые электрические импульсы.
«Когда Майнс решил, что настала пора приступить к экспериментам на людях, он выбрал в подопытные себя самого, — пишет Уинфри. — В тот вечер, около шести часов, привратник заметил, что в лаборатории стоит непривычная тишина, и, встревожившись, направился туда. Майнс лежал под одной из скамей. Рядом с ним стоял аппарат, довольно сложное по тем временам электрическое устройство. К груди, прямо над сердцем, был прикреплен разбитый механизм. Счетчик, находившийся рядом, все еще фиксировал прерывистое биение сердца. Майнс умер, не приходя в сознание».
Не трудно сообразить, что небольшой, но точно рассчитанный по времени шок может повергнуть сердце в состояние фибрилляции. Даже Майнс догадался об этом незадолго до смерти. Другие виды шокового воздействия способны ускорить или задержать следующий удар, как это происходит с суточными ритмами. Но есть одно различие между человеческим сердцем и биологическими часами, которое нельзя не учитывать даже в упрощенной модели: сердце имеет пространственную конфигурацию. Вы можете взять его в руки и проследить электрическую волну в трех измерениях.
Впрочем, для постановки подобного опыта требуется немалое искусство. Рэймонд Е. Айдекер из медицинского центра Университета Дьюка, прочитав статью Уинфри в журнале «Сайентифик Америкен» за 1983 г., отметил четыре конкретных прогноза относительно стимуляции и остановки мерцания сердца, основанных на нелинейной динамике и топологии. Айдекер с настороженностью отнесся к прочитанному. Прогнозы казались чересчур умозрительными и, с точки зрения кардиолога, слишком абстрактными. В течение трех ближайших лет все они подтверждались, и Айдекер занялся претворением в жизнь ускоренной программы по сбору более разноплановых данных в целях совершенствования динамического подхода к сердечной деятельности. Как выразился Уинфри, это был своего рода «кардиологический эквивалент циклотрона».
Электрокардиограмма, которую снимают врачи, представляет лишь объемную одномерную запись. Во время операции на сердце хирург может, взяв электрод, передвигать его от одной зоны в сердце к другой, получая данные с 50 или 60 точек в течение 10 минут и таким образом воспроизводя комбинированное изображение. Но при фибрилляции эта техника бесполезна, поскольку изменения и мерцание сердца очень быстры. Методика Айдекера, которая в значительной степени зависела от обработки данных компьютером в реальном времени, предусматривала создание «паутины» из 128 электродов, заключающей в себе сердце, словно носок ступню. По мере того как сквозь мышечную ткань проходил импульс, электроды фиксировали поле напряжения, а компьютер строил карту сердечной деятельности.
В намерения Айдекера, кроме проверки теоретических идей Уинфри, входила также доработка конструкции электрических устройств, используемых для остановки фибрилляции. Бригады скорой помощи используют стандартные дефибрилляторы, чтобы сквозь грудную клетку воздействовать на сердце пострадавшего мощным импульсом электрического тока. Опытным путем кардиологи разработали небольшой имплантант, вживляемый внутрь грудной клетки пациентов, которые входят в группы риска. Такой кардиостимулятор, который чуть больше синусного узла сердца, «прислушивается» к сердцебиению, ожидая, когда возникнет потребность в электрическом воздействии. Айдекер начал выстраивать физическую базу, необходимую для того, чтобы разработка новых типов дефибрилляторов основывалась не только на опыте, но и на соображениях теоретического характера.
Почему к сердцу, ткани которого состоят из взаимосвязанных разветвляющихся волокон, ответственных за транспорт ионов кальция, калия и натрия, должны применяться законы хаоса? Этот вопрос ставил в тупик ученых в Университете Макгилл и Массачусетском технологическом институте.