Сейчас наилучшим законом нам представляется комбинация принципа минимума и локальных законов. Сегодня мы думаем, что законы физики должны иметь локальный характер и в то же время сочетаться с принципом минимума, но наверняка мы этого не знаем. Если в системе знаний таится какая-то погрешность, но построена система на удачных аксиомах, то впоследствии вы обнаружите, что неверна лишь одна из них, а остальные справедливы; в этом случае потребуются лишь незначительные переделки. Но если вы строили систему на других аксиомах, то она может вся развалиться из-за того, что целиком опирается на одну-единственную слабую деталь. Мы не можем сказать заранее, не прибегая к интуиции, как лучше всего строить систему, чтобы прийти к новому закону. Мы постоянно должны иметь в виду все возможные способы описания; поэтому физики занимаются вавилонской математикой и уделяют мало внимания аксиоматическому построению своей науки.
Одна из поразительных особенностей природы - многообразие возможных схем ее истолкования. Это обусловлено самим характером наших законов, тонких и четких. Например, свойство локальности существует только потому, что сила обратно пропорциональна квадрату расстояния. Если бы там стоял куб, мы не имели бы локального метода. С другой стороны, тот факт, что сила связана с быстротой изменения скорости, позволяет записывать законы, пользуясь принципом минимума. Если бы сила, например, была пропорциональна самой скорости перемещения, а не ускорению, то это было бы невозможно. Стоит сильно изменить законы, и вы обнаружите, что число возможных формулировок сократилось. Мне это всегда представлялось загадкой. Я не понимаю, почему правильные законы физики допускают такое огромное количество разных формулировок. Они похожи на крокетный шар, который проходит сразу через несколько ворот.
Наконец, я хотел бы сделать несколько более общих замечаний о связи математики с физикой. Математики имеют дело только со структурой рассуждений, и им, в сущности, безразлично, о чем они говорят. Им даже не нужно знать, о чем они говорят, или, как они сами выражаются, - истинны ли их утверждения. Объясню почему.
Вы формулируете аксиомы: "То-то и то-то обстоит так, а то-то и то-то обстоит так". Что дальше? Дальше можно заниматься логикой, не зная, что означают слова "то-то и то-то". Если аксиомы полны и сформулированы точно, то человеку, строящему доказательство, необязательно понимать значение слов, для того чтобы получить новый вывод на языке, которым он пользуется.
Если в одной из аксиом стоит слово "треугольник", то в выводах математика будут какие-то утверждения относительно треугольников, однако при получении этих выводов он не обязан знать, что за вещь - треугольник. Я же могу вернуться к началу его рассуждений и сказать: "Треугольник - это фигура с тремя сторонами, которая представляет собой то-то и то-то". И тогда я пойму его новые выводы. Другими словами, математик готовит абстрактные доказательства, которыми вы можете воспользоваться, приписав реальному миру некоторый набор аксиом. Физик же не должен забывать о значении своих фраз.
Это очень важная обязанность, которой склонны пренебрегать люди, пришедшие в физику из математики. Физика - не математика, а математика - не физика. Одна помогает другой. Но в физике вы должны понимать связь слов с реальным миром. Получив какие-то выводы, вы должны их перевести на родной язык и на язык природы - в медные кубики и стеклянные шарики, с которыми вы будете экспериментировать. Только так вы сможете проверить истинность своих выводов. В математике этой проблемы не существует вовсе.
Вполне понятно, что доказательства и способы мышления, найденные математиками, становятся для физиков могучими и полезными орудиями. Но и рассуждения физиков часто приносят пользу математикам.
Математики любят придавать своим рассуждениям возможно более общую форму. Если я скажу им: "Я хочу поговорить об обычном трехмерном пространстве",- они ответят: "Вот вам все теоремы о пространстве
Оказывается, что многие сложные теоремы выглядят гораздо проще, если их применить к частному случаю. А физика интересуют только частные случаи; он никогда не интересуется общим случаем. Он говорит о чем-то конкретном; ему не безразлично, о чем говорить. Он хочет обсуждать закон тяготения в трехмерном пространстве; ему не нужны произвольные силы в пространстве