Читаем Характер Физических Законов полностью

Прежде чем идти дальше, мне хотелось бы подчеркнуть, что во всех этих преобразованиях и всех этих законах симметрии мы не говорили о переносе Вселенной в целом. В случае сдвигов по времени говорить о таком сдвиге для всех процессов Вселенной значило бы вообще ничего не сказать. Точно так же нет никакого разумного содержания и в утверждении, что если бы можно было перенести всю нашу Вселенную в другое место в пространстве, ничего не изменилось бы. Замечательно во всех этих законах вот что: если взять какую-то установку и перенести ее в другое место, убедиться в выполнении целого ряда условий и перенести туда же достаточно дополнительных устройств, то окажется, что нам удалось выделить часть нашей Вселенной и переместить ее относительно оставшейся части, и это не приводит для наблюдаемого явления к каким-либо последствиям, все останется, как и раньше.

В случае принципа относительности это значит, что тот, кто летит в космосе по прямой с постоянной скоростью относительно среднего положения нашей Вселенной, не заметит никаких признаков своего движения. Иначе говоря, опыты, поставленные внутри движущегося тела и не связанные с выглядыванием в окошко, не позволяют определить по каким-либо признакам, движемся ли мы относительно всех звезд в совокупности или нет.

Это утверждение было впервые высказано Ньютоном. Рассмотрим его закон всемирного тяготения. Он утверждает, что силы взаимодействия между массами обратно пропорциональны квадрату расстояния между ними и что каждая сила вызывает изменение скорости.

Предположим теперь, что мне удалось построить теорию движения планеты, вращающейся вокруг неподвижного Солнца, а мне хочется выяснить, что происходит с планетой, вращающейся около движущегося Солнца. Во втором случае все скорости отличны от тех, которые наблюдаются в первом случае, к их старым значениям нужно прибавить некоторую постоянную скорость. Но закон содержит утверждение лишь относительно изменений скорости, а поэтому на самом деле получается, что все силы, действующие на планету неподвижного Солнца, в точности такие же, как и для планеты дрейфующего Солнца, и, следовательно, все изменения скорости для обеих планет одинаковы. Поэтому любая дополнительная скорость, с которой мы начинаем во втором случае, сохраняет свое значение, и все изменения скорости накапливаются помимо этого.

Окончательный результат таких математических рассуждений говорит, что если добавить всем телам постоянную скорость, то они по-прежнему в точности будут подчиняться тем же законам, что и раньше. Вот поэтому, изучая Солнечную систему и траектории движения планет вокруг Солнца, мы не можем решить, неподвижно ли Солнце относительно нашей Вселенной или оно движется. В соответствии с законом Ньютона такое движение Солнца никак не отражается на движении планет вокруг Солнца. Поэтому Ньютон добавлял: "Движение тел в пространстве относительно друг друга одно и то же, независимо от того, неподвижно ли это пространство относительно звезд или движется по прямой с постоянной скоростью".

Время шло, и после Ньютона были открыты новые законы, и в их числе законы электродинамики Максвелла (1831-1879). Одно из следствий законов электродинамики заключается в том, что должны существовать волны, электромагнитные волны (световые волны могут служить их примером), которые распространялись бы со скоростью 299 792 км/с, ни больше, ни меньше. То есть именно 299 792 км/с, что бы там ни было. Но тогда нетрудно решить, что же находится в покое, а что движется, так как закон, согласно которому свет распространяется со скоростью ~300 000 км/с, наверняка (с первого взгляда) не таков, чтобы позволить наблюдателю двигаться без каких-либо видимых изменений. Очевидно, не правда ли, что если вы находитесь в космическом корабле и летите со скоростью 200 000 км/с в каком-то направлении, а я останусь на Земле и направлю пучок света, распространяющийся со скоростью 300 000 км/с, через маленькую дырочку в вашей кабине, то, поскольку вы движетесь со скоростью 200 000 км/с, вам будет казаться, что свет распространяется лишь со скоростью 100 000 км/с. Но, как выяснилось, если действительно поставить такой эксперимент, то вам будет казаться, что свет распространяется со скоростью 300 000 км/с относительно вас, а мне - что он распространяется со скоростью 300 000 км/с относительно меня!

Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное