Читаем Характер Физических Законов полностью

Затем, если поместить в другом месте другой точно такой же детектор и проследить за их работой одновременно, можно заметить, что никогда не бывает двух щелчков, происходящих одновременно, по крайней мере если накал достаточно слаб, а точность фиксации времени щелчка удовлетворительна. Если уменьшить интенсивность источника гак, чтобы щелчки стали редкими и достаточно разнесенными друг от друга, то одновременно щелчков в обоих детекторах не бывает. А это значит, что возникающие события происходят дискретно, порциями, причем у каждой порции вполне определенная, постоянная для всех величин, и что в данный момент времени такая порция может находиться лишь в одном месте.

Итак, электроны или фотоны попадают в детектор по одному, дискретно, порциями. Поэтому мы можем поступить так же, как и в случае с пулями: мы можем измерить вероятность появления. Для этого нам нужно периодически менять положение детектора (конечно, если хочется, мы можем, хотя это и дорого, установить целую серию детекторов на поверхности последнего экрана и снимать кривую одновременно во всех точках), оставляя его в каждой конкретной точке, скажем, в течение часа, и записывать в конце этого часа число зарегистрированных электронов, а затем усреднить это число. Так что же мы получим для числа зарегистрированных электронов? Кривую N 12того же типа, что и в опыте с пулями? Кривая N 12, соответствующая случаю, когда оба отверстия открыты, показана на рис. 32. Как видите, экспериментально установлено, что эта кривая оказывается такой же, как и в опыте с интерференцией волн. Но чему же соответствует эта кривая? Не энергии, заключенной в волнении, а вероятности попадания одной из этих порций в детектор.

Соответствующие математические выкладки чрезвычайно просты. Мы заменили Iна N, так что нам придется заменить hна что-то другое, совсем новое, - это никакая не высота, - в связи с чем мы и придумаем параметр a, который будем называть амплитудой вероятности, так как мы все равно не знаем, что это значит. Тогда через a 1обозначим амплитуду вероятности попадания сквозь отверстие 1, а через a 2- амплитуду вероятности попадания сквозь отверстие 2. А для того чтобы определить амплитуду полной вероятности попадания, нужно сложить обе эти амплитуды, а сумму возвести в квадрат. Это будет точной имитацией того, что происходит с волнами, а пользоваться теми же математическими выкладками мы стали в этом случае потому, что результирующая кривая получается в нашем случае точно такой же, как и в опыте с волнами.

Теперь мне нужно проверить еще один факт: выяснить, есть ли здесь интерференция или нет. Ведь мы пока еще не говорили, что происходит, если закрыть одно из отверстий. Попытаемся проанализировать получающуюся любопытную кривую, предполагая, что электроны попадают в детектор либо через одно отверстие, либо через другое. Закроем одно из отверстий и измерим, сколько электронов попадает в различные участки последнего экрана через отверстие 1. В результате получим простую кривую N 1. Точно так же мы можем закрыть второе отверстие, измерить число электронов, попадающих в детектор через отверстие 2, и получим кривую N 2. Тем не менее, если открыть оба отверстия, мы не получим суммы N 1+ N 2так что интерференция действительно есть. Значит, в самом деле нужно при математических выкладках пользоваться этой странной формулой, согласно которой вероятность попадания равна квадрату амплитуды, которая в свою очередь представляет собой сумму двух слагаемых: N 12= ( a 1+ a 2) 2.

Вопрос как раз и заключается в том, как же так может быть, что если электроны проходят лишь через отверстие 1, они оказываются распределенными одним образом, когда они проходят лишь через отверстие 2, они распределяются по-другому, но тем не менее в том случае, когда открыты оба отверстия, не получается суммы двух этих распределений.

Например, если детектор установить в положении qи открыть оба отверстия, в него практически ничего не попадет, но в то же время стоит мне закрыть одно из них, детектор начнет работать независимо от того, какое из отверстий было закрыто. Опять откроем оба отверстия, и вновь ничего. Мы позволили электронам пролетать в детектор через оба отверстия, а они сразу перестали прилетать совсем. Или выберем точку строго посредине: нетрудно убедиться, что здесь число прилетающих электронов больше суммы электронов, прилетающих через каждое отверстие по отдельности.

Кажется, если подумать хорошенько, всегда можно найти какое-то объяснение: например, электроны могут возвращаться обратно через те же отверстия, а затем проходить через них еще раз, или с ними происходит какой-нибудь другой сложный процесс, или возникает возможность расщепления электрона на два, пролетающих через разные отверстия, или что-нибудь в этом роде, как-то объясняющее это явление. Но пока еще никому не удалось придумать удовлетворительное объяснение такого рода, потому что конечный вид математических закономерностей очень уж прост (суммарная кривая получается очень простой - см. рис. 32).

Перейти на страницу:

Похожие книги

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Что происходит, когда объект падает в чёрную дыру? Исчезает ли он бесследно? Около тридцати лет назад один из ведущих исследователей феномена чёрных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу всё, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе чёрных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку. Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что всё в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краёв Вселенной.

Леонард Сасскинд

Физика / Научпоп / Образование и наука / Документальное