Читаем Характер физических законов полностью

Это одна из основных характеристик природы, и она говорит нам кое-что обо всем. Если завтра найдут новую частицу, каон, – по правде говоря, каон уже найден, но ведь новую частицу нужно как-то назвать, так что назовем ее каоном, – я воспользуюсь каонами для того, чтобы при их помощи определить, через какое отверстие пролетит электрон. Я знаю заранее – по крайней мере я надеюсь, что это так, – вполне достаточно о свойствах этой еще не известной мне частицы, чтобы быть уверенным в том, что она не может сказать мне, через какое отверстие пролетел электрон, и не изменить при этом картины с интерференционной на безынтерференционную. Поэтому принципом неопределенности можно пользоваться как общим принципом, позволяющим предсказывать наперед многие характеристики неизвестных объектов. Вероятные свойства таких объектов не могут быть какими угодно.

Вернемся к нашему утверждению А – «электрон должен пролететь либо через отверстие 1, либо через отверстие 2». Правильно это или нет? Физики научились обходить западни. Они взяли за правило думать следующим образом. Если у вас есть прибор, позволяющий определять, через какое отверстие пролетел электрон (а такой прибор можно сделать), то вы можете утверждать, что он пролетает либо через одно отверстие, либо через другое. Так оно и происходит: когда вы следите за электроном, он пролетает либо через одно отверстие, либо через другое. Но если у вас нет такого прибора, то вы и не можете сказать, что он пролетает либо через одно отверстие, либо через другое. (Вернее, всегда можно сказать, что это так, если вы на этом сразу остановитесь и не станете делать из этого какие-либо выводы. Физики же предпочитают просто не говорить этого, вместо того чтобы говорить и не делать никаких выводов.) Исходить же из того, что электрон пролетает либо через одно отверстие, либо через другое, когда вы этого не видите, значило бы основывать свои предсказания на ошибочной предпосылке. Вот тот логический канат, на котором приходится балансировать, если мы хотим заниматься объяснением явлений природы.

Утверждение, о котором мы говорим, носит самый общий характер. Оно относится не только к опыту с двумя отверстиями, и его можно сформулировать в общем виде следующим образом. Вероятность любого события в идеальном эксперименте – т. е. эксперименте, где все определено настолько точно, насколько только это возможно, – равна квадрату некоторой другой величины а, которую мы назвали амплитудой вероятности. Если это событие может происходить в нескольких взаимно исключающих вариантах, то амплитуда вероятности а получается как сумма значений а для каждого из возможных вариантов (альтернатив). Но если в нашем эксперименте можно выяснить каждый раз, в каком именно варианте произошло событие, вероятность события меняется: теперь это просто сумма вероятностей каждого из вариантов. Другими словами, интерференция уничтожается.

Но остается нерешенным вопрос: а как же так получается? Каким образом все так выходит? К сожалению, этого никто не знает. Никто не сможет дать вам более глубокого объяснения явления, чем то, какое я вам только что дал, а ведь я всего лишь описал его вам. Можно лишь расширить объяснение, приведя больше примеров, показывающих, что действительно невозможно, не разрушая интерференционной картины, узнать, через какое отверстие пролетел электрон. Можно рассказать про более широкий круг экспериментов, а не только об одном опыте с двумя отверстиями и интерференцией двух картинок. Но это значило бы лишь повторять одно и то же снова и снова, пытаясь заставить вас поверить в реальность рассказываемого. Такие объяснения ничуть не глубже, они лишь шире. Конечно, можно уточнить математические выкладки, можно сказать, что здесь нужно пользоваться комплексными, а не вещественными числами, отметить одну или две другие второстепенные детали, не имеющие прямого отношения к основной идее. Но настоящая загадка заключается в том, о чем я вам только что рассказал, и сегодня никто не знает, как здесь можно копнуть глубже.

До сих пор мы занимались вычислением вероятности попадания электрона. Возникает вопрос: а можно ли каким-либо образом узнать, куда же на самом деле попадает каждый отдельный электрон? Конечно, мы не прочь использовать теорию вероятностей, т. е. подсчитывать наши шансы, в очень сложной ситуации. Когда мы подбрасываем монету, то, учитывая всякие сопротивления, все эти атомы и другие подобные сложности, мы вполне допускаем, что наших знаний недостаточно для точного предугадывания. Поэтому мы удовлетворяемся вычислением шансов того или иного исхода. Но ведь в опытах с электронами речь идет совсем не об этом – здесь мы предполагаем, не правда ли, что вероятность лежит в самой основе всего, что подсчет шансов начинается уже с фундаментальных законов физики.

Перейти на страницу:

Все книги серии Великие ученые и их открытия

Радость познания
Радость познания

Ричард Фейнман (1918–1988) — выдающийся американский физик, удостоенный Нобелевской премии по квантовой электродинамике, один из создателей атомной бомбы, автор знаменитого курса лекций, который стал настольной книгой для каждого, кто открывает для себя потрясающий мир физики.Великолепная коллекция коротких работ гениального ученого, талантливого педагога, великолепного оратора и просто интересного человека Ричарда Фейнмана — блестящие, остроумные интервью и речи, лекции и статьи. Вошедшие в этот сборник работы не просто дают читателю представление об энциклопедическом интеллекте прославленного физика, но и равно позволяют заглянуть в его повседневную жизнь и внутренний мир.Книга мнений и идей — о перспективах науки, об ответственности ученых за судьбы мира, о главных проблемах бытия — познавательно, остроумно и необыкновенно интересно.

Ричард Филлипс Фейнман

Публицистика / Научная литература / Прочая научная литература / Образование и наука / Документальное
Наука, не-наука и все-все-все
Наука, не-наука и все-все-все

Ричард Фейнман не раз признавался, что строгий порядок, красота и гармония окружающего мира с самого раннего детства приводили его в восхищение и вызывали непреодолимое желание проникнуть в его тайны. Радость узнавания была столь глубокой и искренней, что ему захотелось разделить ее вместе со всеми, что и сподвигло его стать страстным популяризатором науки. Его знаменитые лекции для гуманитариев вошли в легенду и привлекли в науку не одно поколение молодежи.Предлагаемый сборник, в который включены ранее не публиковавшиеся лекции, прочитанные Фейнманом в Вашингтонском университете в 1963 году, открывает знаменитого ученого с новой стороны – как человека, имеющего весьма оригинальное и интересное мнение о конфликте между наукой и религией, о том, можно ли доверять политикам, о нетрадиционной медицине и даже о воспитании детей и посещении Земли НЛО.Публикуется с разрешения издательства Basic Books, an imprint of Perseus Books, a division of PBG Publishing, LLC, a subsidiary of Hachette Book Group, Inc. (CША) при содействии Агентства Александра Корженевского (Россия).

Ричард Филлипс Фейнман

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука

Похожие книги

Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять
Нейрогастрономия. Почему мозг создает вкус еды и как этим управлять

Про еду нам важно знать все: какого она цвета, какова она на запах и вкус, приятны ли ее текстура и температура. Ведь на основе этих знаний мы принимаем решение о том, стоит или не стоит это есть, удовлетворит ли данное блюдо наши физиологические потребности. На восприятие вкуса влияют практически все ощущения, которые мы испытываем, прошлый опыт и с кем мы ели то или иное блюдо.Нейрогастрономия (наука о вкусовых ощущениях) не пытается «насильно» заменить еду на более полезную, она направлена на то, как человек воспринимает ее вкус. Профессор Гордон Шеперд считает, что мы можем не только привыкнуть к более здоровой пище, но и не ощущать себя при этом так, будто постоянно чем-то жертвуем. Чтобы этого добиться, придется ввести в заблуждение мозг и заставить его думать, например, что вареное вкуснее жареного. А как это сделать – расскажет автор книги.Внимание! Информация, содержащаяся в книге, не может служить заменой консультации врача. Перед совершением любых рекомендуемых действий необходимо проконсультироваться со специалистом.В формате PDF A4 сохранён издательский дизайн.

Гордон Шеперд

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Медицина и здоровье / Дом и досуг
История леса
История леса

Лес часто воспринимают как символ природы, антипод цивилизации: где начинается лес, там заканчивается культура. Однако эта книга представляет читателю совсем иную картину. В любой стране мира, где растет лес, он играет в жизни людей огромную роль, однако отношение к нему может быть различным. В Германии связи между человеком и лесом традиционно очень сильны. Это отражается не только в облике лесов – ухоженных, послушных, пронизанных частой сетью дорожек и указателей. Не менее ярко явлена и обратная сторона – лесом пропитана вся немецкая культура. От знаменитой битвы в Тевтобургском лесу, через сказки и народные песни лес приходит в поэзию, музыку и театр, наполняя немецкий романтизм и вдохновляя экологические движения XX века. Поэтому, чтобы рассказать историю леса, немецкому автору нужно осмелиться объять необъятное и соединить несоединимое – экономику и поэзию, ботанику и политику, археологию и охрану природы.Именно таким путем и идет автор «Истории леса», палеоботаник, профессор Ганноверского университета Хансйорг Кюстер. Его книга рассказывает читателю историю не только леса, но и людей – их отношения к природе, их хозяйства и культуры.

Хансйорг Кюстер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература