Это одна из основных характеристик природы, и она говорит нам кое-что обо всем. Если завтра найдут новую частицу, каон, – по правде говоря, каон уже найден, но ведь новую частицу нужно как-то назвать, так что назовем ее каоном, – я воспользуюсь каонами для того, чтобы при их помощи определить, через какое отверстие пролетит электрон. Я знаю заранее – по крайней мере я надеюсь, что это так, – вполне достаточно о свойствах этой еще не известной мне частицы, чтобы быть уверенным в том, что она не может сказать мне, через какое отверстие пролетел электрон, и не изменить при этом картины с интерференционной на безынтерференционную. Поэтому принципом неопределенности можно пользоваться как общим принципом, позволяющим предсказывать наперед многие характеристики неизвестных объектов. Вероятные свойства таких объектов не могут быть какими угодно.
Вернемся к нашему утверждению
Утверждение, о котором мы говорим, носит самый общий характер. Оно относится не только к опыту с двумя отверстиями, и его можно сформулировать в общем виде следующим образом. Вероятность любого события в идеальном эксперименте – т. е. эксперименте, где все определено настолько точно, насколько только это возможно, – равна квадрату некоторой другой величины
Но остается нерешенным вопрос: а как же так получается? Каким образом все так выходит? К сожалению, этого никто не знает. Никто не сможет дать вам более глубокого объяснения явления, чем то, какое я вам только что дал, а ведь я всего лишь описал его вам. Можно лишь расширить объяснение, приведя больше примеров, показывающих, что действительно невозможно, не разрушая интерференционной картины, узнать, через какое отверстие пролетел электрон. Можно рассказать про более широкий круг экспериментов, а не только об одном опыте с двумя отверстиями и интерференцией двух картинок. Но это значило бы лишь повторять одно и то же снова и снова, пытаясь заставить вас поверить в реальность рассказываемого. Такие объяснения ничуть не глубже, они лишь шире. Конечно, можно уточнить математические выкладки, можно сказать, что здесь нужно пользоваться комплексными, а не вещественными числами, отметить одну или две другие второстепенные детали, не имеющие прямого отношения к основной идее. Но настоящая загадка заключается в том, о чем я вам только что рассказал, и сегодня никто не знает, как здесь можно копнуть глубже.
До сих пор мы занимались вычислением вероятности попадания электрона. Возникает вопрос: а можно ли каким-либо образом узнать, куда же на самом деле попадает каждый отдельный электрон? Конечно, мы не прочь использовать теорию вероятностей, т. е. подсчитывать наши шансы, в очень сложной ситуации. Когда мы подбрасываем монету, то, учитывая всякие сопротивления, все эти атомы и другие подобные сложности, мы вполне допускаем, что наших знаний недостаточно для точного предугадывания. Поэтому мы удовлетворяемся вычислением шансов того или иного исхода. Но ведь в опытах с электронами речь идет совсем не об этом – здесь мы предполагаем, не правда ли, что вероятность лежит в самой основе всего, что подсчет шансов начинается уже с фундаментальных законов физики.