У вас может сложиться не совсем правильное представление о науке. Вам может показаться, будто мы все время строим догадки, а затем проверяем их на экспериментах, так что эксперименту отводится подчиненная роль. Но на самом деле экспериментаторы вполне самостоятельные люди. Они любят экспериментировать даже до того, как кто-нибудь что-нибудь придумает, и очень часто работают в таких областях, в которых теоретики заведомо не делали еще никаких догадок. Например, мы можем знать много законов, но мы не знаем, справедливы ли они на самом деле при очень высоких энергиях, так как предположение об их справедливости – всего лишь хорошая гипотеза. Экспериментаторы пытаются ставить опыты с высокими энергиями, и время от времени они сталкиваются с трудностями – то, что мы считали правильным, оказывается неверным. Таким образом, эксперименты могут привести к неожиданным результатам, а это заставляет нас выдвигать новые догадки. В качестве одного примера неожиданного экспериментального результата можно указать на открытие m-мезона и нейтрино, о существовании которых никто не предполагал до тех пор, пока они не были открыты, и даже теперь никто не знает, как можно было бы догадаться о существовании этих частиц.
Конечно, вы понимаете, что такой метод позволяет только опровергнуть любую определенную теорию. Если только у нас есть какая-нибудь теория, какая-нибудь настоящая гипотеза, при помощи которой мы можем обычными методами предсказать результат эксперимента, то этого, вообще говоря, достаточно, чтобы покончить с этой теорией, как бы хороша она ни была. У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть. В будущем вы смогли бы рассчитать более широкий круг следствий, провести более широкие экспериментальные исследования и выяснить, что ваша теория неверна. Вот почему у законов типа законов движения планет Ньютона такая долгая жизнь. Ньютон угадал закон всемирного тяготения, вывел из него самые различные следствия для Солнечной системы, сравнил их с результатами наблюдений – и потребовалось несколько столетий, прежде чем было замечено незначительное отклонение движения планеты Меркурий от предсказанного. На протяжении всех этих лет теория Ньютона не была опровергнута, и временно ее можно было считать верной. Но ее правильность никогда нельзя было доказать, потому что уже завтра эксперимент, может быть, покажет вам неправильность того, что вам казалось верным еще сегодня. Можно только удивляться тому, что нам удается придумывать теории, которые выдерживают натиск эксперимента столь длительное время.
Один из верных способов остановить прогресс науки – это разрешить эксперименты лишь в тех областях, где законы уже открыты. Но экспериментаторы усерднее всего ведут поиск там, где вероятнее всего найти опровержение наших теорий. Другими словами, мы стараемся как можно скорее опровергать самих себя, ибо это единственный путь прогресса. Например, сегодня среди обычных явлений с низкой энергией мы не знаем, где найти какую-нибудь неувязку, нам кажется, что здесь все в порядке, а поэтому и нет широкого фронта исследований ядерных реакций или явлений сверхпроводимости, направленных на поиск слабых мест. В настоящих лекциях я сосредоточил все внимание на открытиях фундаментальных законов. Правда, физика в целом, а это не менее важно, включает в себя и другой уровень исследований, интерпретацию явлений типа ядерной реакции или сверхпроводимости с точки зрения этих фундаментальных законов. Но сейчас я говорю о поисках слабых мест, каких-то ошибок в фундаментальных законах, и так как никто не знает, где найти такое место среди явлений низкой энергии, все экспериментаторы сегодняшнего дня, занятые поиском новых законов, ищут их в области высоких энергий.