Расчет по теории колебаний может быть автоматизирован применением математических пакетов программирования таких как MathCAD.
Расчет методом конечных элементов является теоретически самым обоснованным методом расчета валов и выполняется в специальном программном пакете. Используемый программный пакет может выступать в роли стандарта по-умолчанию на расчет валов на резонанс.
Расчет валов на резонанс по теории колебаний
Колебания при вращении вала происходят в результате отсутствия равновесия между внутренними силами упругости металла и внешними динамическими нагрузками. При гармоническом колебании отклонение оси вала от прямой происходит по синусоиде, т.е.:
Под степенью свободы понимается определение положения вала относительно системы координат с помощью одной координаты. Этой одной координате соответствует одна мешалка на валу.
Если колебания вала возникают из-за колебаний упругих внутренних сил, колебания являются свободными или собственными. Если под действием внешней силы по закону с заданной периодичностью, то колебания являются вынужденными.
Изменение жесткости вала связано с изменением статической деформации, которая связана со свободной частотой по формуле:
На резонансной частоте амплитуда вынужденных колебаний неограниченно возрастает при отсутствии внешних сопротивлений:
При наличии ограничителей колебаний, при резонансе амплитуды не превышают какого-либо максимального значения. Для валов мешалок в условиях отсутствия элементов, ограничивающих колебания, важно обеспечить расчетом отсутствие совпадения частот свободных колебаний и резонанса. При разгоне вала до рабочих оборотов, происходит быстрый переход через резонансную частоту, не оказывающий влияния на вал.
Для значений частот, близких к резонансной возникают биения вала. Для случая вала мешалки при отсутствии сопротивлений биению, колебания имеют вид:
Затухающие биения при отходе от частот, близких к резонансным имеет вид:
Для получения формулы вынужденных колебаний с учетом сопротивлений к внешним силам добавляют периодическую возмущающую силу
Упругие колебания системы с одной степенью свободы в общем случае (вторые два члена формулы относятся к вынужденным колебаниям):
Уравнения для всех трех приведенных случаев колебаний можно получить из него как частные случаи:
– собственные колебания без учета сопротивлений (
– собственные затухающие колебания (вынуждающая сила
– вынужденные колебания без учета сопротивлений (, , в формуле получается, что первый член является вынужденными колебаниями, остальные два члена свободными колебаниями)
Формула вынужденных колебаний получается из вторых двух членов уравнения упругих колебания после отбрасывания свободных колебаний и замены в формуле
Т.е. вынужденные колебания являются гармоническими (так же как и собственные)
Амплитуда вынужденных колебания находится возведением в квадрат указанных двух членов формулы и последующим сложением:
Как видно из формулы амплитуда вынужденных колебаний пропорциональна возмущающей силе, зависит от сравнительной частоты свободных р и вынужденных m колебаний, определяющих затухание свободных колебаний
При
В отсутствии сопротивлений произойдет разрушение вала через определенный промежуток времени.
При
Приведем график амплитуд колебаний:
Как видно из рисунка, при резонансной частоте происходит разрыв кривой прогиба вала и разрушение вала.
При расчете вала необходимо не допускать наличия расчетных частот в пределах биения, то есть в пределах близких к резонансной частоте для недопущения разрушения вала. Запас может превышать критическую частоту на 20%. Такой запас, например, установлен для валов центробежных нефтяных насосов в ГОСТ 32601.
При сложении свободных и вынужденных колебаний получается результирующее колебание как результат наложения колебаний, колебание получается в форме биений: