В качестве такого элемента можно было выбрать водород или, например, кислород, атомный вес которого решили считать равным 16. Но, как ты, наверное, уже догадался, при таком подходе к делу мог начаться полный кавардак. Если одни учёные начнут брать за точку отсчёта водород, а другие — кислород, путаницы не избежать.
После введения гипотезы Дальтона в науку подобная неопределённость существовала в химии ещё долго, сильно затрудняя проведение научных исследований. Пользуясь неодинаковыми основными единицами, а следовательно и различными формулами соединений, учёные перестали понимать друг друга.
Любопытный факт: до последней четверти XIX века формулу воды писали не H2
O, а НО. Считалось, что на один атом водорода приходится один атом кислорода.Выход из создавшегося положения нашёл итальянский учёный Амедео Авогадро
(1776–1856). Он родился в Турине, был дворянином и, как и Лавуазье, должен был пойти учиться в адвокатуру. Но, опять же как Лавуазье, отказался от изучения законов, придуманных человеком, в пользу законов природы. В 33 года Авогадро стал доцентом «философии природы», а когда сделал себе в научных кругах имя, король Виктор Эммануил создал для него в Турине специальную кафедру математической физики. Правда, спустя три года кафедру упразднили и восстановили только в 1833 году, но её тут же занял знаменитый французский математик Огюстен Луи Коши. И лишь через год кафедра вновь отошла в распоряжение Авогадро.Главная заслуга Авогадро заключается в том, что он выдвинул гипотезу, позволившую наконец определять относительные веса молекул. В 1811 году он предположил, что одинаковые объёмы различных газов содержат одинаковое число частиц. Три года спустя к аналогичному заключению пришёл и знаменитый физик Ампер, однако другие учёные ещё долго не признавали эту гипотезу, несмотря на её простоту и огромное значение для определения атомных весов.
Наряду с вопросом о весе атомов и молекул перед химиками стоял также вопрос о размерах, диаметрах этих частиц. Поскольку разглядеть их в микроскоп не представлялось никакой возможности, учёные чего только не придумывали! В частности, делали из золота сверхтонкую пластинку, измеряли её площадь, взвешивали и, зная плотность золота, высчитывали толщину, которая в расчётах могла достигать 0,000066 миллиметра. Учёные приходили к выводу, что атом много меньше этого значения. Немецкий физик Рентген получал плёнки толщиной в 0,0000005 миллиметра. Значит, атом ещё меньше.
На основании других, более сложных опытов, проведённых независимо друг от друга, учёные вычислили, сколько частиц содержится в одном кубическом сантиметре газа при атмосферном давлении и нуле градусов по Цельсию. Поскольку ранее Авогадро установил, что в одинаковом объёме различных газов содержится одинаковое количество частиц, это число было принято за константу (постоянную величину). Правда, ей присвоили имя австрийского физика Лошмидта (постоянная Лошмидта), так как он первым установил, что в одном кубическом сантиметре газа содержится 32»1018
частиц. Теперь, если признать, что частица имеет форму шара, легко стало вычислить её радиус. В ходе дальнейших расчётов удалось установить, что размер одной частицы чрезвычайно мал: составляет примерно 10-9 метра.Такие размеры очень трудно представить даже мысленно. Да и зачем, если у нас под рукой всегда есть математика, способная проникнуть туда, куда не суждено проникнуть человеческому глазу? Так что теперь задача по определению размера частиц полностью легла на плечи математиков.
Однако существует и другой путь. Благодаря радию заветная мечта физиков, заключающаяся в непосредственном визуальном наблюдении за атомами, приблизилась к осуществлению. Как известно, радий излучает альфа-частицы, а альфа-частица — это ядро атома гелия. Так вот если в тёмной комнате положить руду, содержащую радий, то на установленном напротив фосфоресцирующем экране можно будет наблюдать вспыхивание маленьких огоньков. Эти огоньки возникают при столкновении ядер атомов гелия с материалом экрана-пластинки. И человеческий глаз прекрасно данный процесс воспринимает.
Глава 8. Органика — наше всё!
К началу XIX века были известны сотни органических соединений, были сделаны их точные анализы, но вот классифицировать эти соединения учёные ещё не умели. Первые попытки делали Либих и Вёлер, о которых я тебе уже рассказывал, но их методы оставляли слишком большой простор для различных вариаций. Одни и те же вещества в те годы можно было классифицировать по-разному, ведь при классификации органических веществ учёные в основном руководствовались каждый своим «химическим чутьём». Химия же — наука точная и двусмысленностей допускать не должна.