Теперь неорганическим синтезом заменяют природный. И самое тугоплавкое из всех нам известных веществ уже не природное, а синтетическое. Первенство по твердости держит уже не естественный алмаз, а искусственный боразон. Негорючий каучук без углерода, очень прочное волокно из соединений серы — вот первые новинки химии неорганических полимеров.
Фтороорганика означает стойкие против воды, огня, излучений, легкие и прочные материалы. А кроме того, это материалы для атомной и атомноракетной техники, техники полупроводниковой и лазерной.
Это и автомобиль будущего. О нем пишет американский ученый Дж. Саймонс. «Фтороорганические соединения смогут улучшить наши автомобили. Фтороуглеродное смазочное масло не надо заменять свежим. Жидкий фтороуглерод заменит антифриз и никогда не даст ржавчины. Шины из фтороуглеродных каучуков совершенно не будут портиться, и их не надо будет менять. Обивочная ткань на сиденьях будет огнеупорной и не боящейся пыли. Охлаждающей жидкостью из радиатора можно будет загасить пламя, если все же машина загорится. У автомобиля — фторопластовый корпус. II двигатель будет у него не поршневой, а газотурбинный. Вращать турбину будут пары фтороуглерода…»
Ученые выяснили, что бор может образовывать необычные соединения с водородом — не с целыми, а с дробными связями. И поэтому в молекуле диборана, например, один атом водорода связан сразу с двумя атомами бора, а бор имеет четыре связи вместо положенных ему, трехвалентному, трех.
Поиски лучших ракетных топлив привели к открытию и более сложных бороуглеродо-водородных построек — барена и необарена. Они замечательны своей необычной химической структурой. В молекуле барена, например, углерод оказался шестивалентным, что несказанно изумило химиков.
Барен и необарен — бороорганические соединения, первые из этого вновь открытого класса. Они чрезвычайно устойчивы, не боятся ни нагрева, ни сильных окислителей. В будущем они послужат основой для получения ряда веществ, применение которых полностью сейчас предугадать еще невозможно.
Говоря о металлоорганике, химики имеют в виду такие ее перспективы, как полимер легче воды, прозрачнее воздуха и прочнее стали. Им видится полимер, который может служить преобразователем энергии: он будет поглощать энергию космических лучей и превращать ее в тепло или свет.
Металлоорганика открыла новый, ранее неизвестный вид соединений: два углеродных цикла, две конструкции из атомов, расположенных в вершинах многоугольников, — и между ними атом металла. Металл соединяет их, образуя очень прочное вещество. Он зажат между циклами, как начинка в сандвиче между двумя ломтями хлеба. Свойства его неожиданны: марганцевый «бутерброд» — отличный антидетонатор, бутерброд с железом — ферроцен — очень прочен и послужил родоначальником новых красителей.
Сандвич-соединения представляют загадку для классической химии. В ферроцене, например, железо получается вроде бы десятивалентным! Видимо, здесь действуют какие-то пока незнакомые нам закономерности.
Требования к материалам будущего многогранны, и универсальную синтетику создать невозможно. Все же химия стремится к сочетанию качеств, которые природа не может объединить.
В дополнение к старому, давно всем известному стеклу химия, например, создаст новые, поистине чудо-стекла.
Уже есть совершенно небьющееся стекло. Оно так прочно, что даже тонкий стеклянный лист нельзя разбить сильным ударом. Тяжелый стальной шар отскочит от него как мячик.
Появится стекло прочнее металла — в стеклянной капсуле можно будет опуститься даже на дно глубочайшей океанской впадины, где давление более тысячи атмосфер.
А ситалл — новый материал, родственник стекла — выдерживает давление, которое не выдерживает сталь. К тому же он не боится кислот и высокой температуры, не растрескается, если его после нагрева опустить в воду.
Из стекла пока что не делают рельсы и станки, но лишь пока… Когда появится ковкое и пластичное стекло, то и это станет возможным.
Стекло с пленочным покрытием, защищающее от солнца, стекло с электропроводящей пленкой, отапливающее помещение…
Большое будущее также и у старого знакомого — кварцевого стекла, чрезвычайно прочного и пропускающего ультрафиолетовые и инфракрасные лучи.
Еще одно применение стекла, о котором не подозревали даже фантасты. Предполагают, что из стекла удастся, возможно, изготовить светопроводы. По каналам из стекловолокна с отражающими стенками будут передавать изображения и даже свет, выработанный мощными генераторами — лазерами. Свет транспортируется, почти не ослабляясь и, конечно, не выходя наружу. Так можно будет со светостанций подавать освещение в дома и на заводы. Более того, свет подберут нужного состава и оттенка — скажем, дневной и вечерний — и централизованно доставят потребителям, которым тогда не понадобятся громоздкие осветительные электроприборы.