Читаем Химия завтра полностью

Но это далеко не все. Она уже сейчас дает самые разные и притом необыкновенно полезные вещества — от антистарителей для полимеров до катализаторов, от присадок к бензину против детонации до консервантов, сохраняющих масло, фрукты, мясо и даже кровь. Среди комплексов — наилучшие красители, яркие и стойкие. И, конечно, комплексы найдут широкое применение в малой, бытовой химии и в медицине. Они способны, например, удалять из организма сильнейшие яды. Комплексы станут орудием тонкого химического анализа.

Из газа этилена, не прибегая к сильному нагреву и давлениям — этим обычным орудиям химиков, заставляющим молекулы вступать в реакции, можно получить твердый полиэтилен. Такое удивительное превращение происходит в присутствии катализатора-комплекса. Кто знает, быть может, среди комплексов найдутся ускорители и для других реакций полимеризации?

Оказалось, что в многообразном мире всевозможных искусственных соединений существуют удивительные молекулярные постройки без химических связей.

Впервые, впрочем, о них узнали полтора века назад, но как-то даже не поверили, что такое может быть. А факты накапливались. Наконец, уже специально синтезировали соединение, которого в природе никогда еще не встречали и которое построено иначе, чем все другие.

Оно образовалось не под действием обычных химических сил. Молекулы в нем соединены, как звенья цепочки. Можно все сооружение сделать из колец, причем сцеплять их по-разному, например закручивая и переплетая цепи в узлы.

Химия до сих пор такого строительного принципа не знала. Катенанами (от слова «катена» — цепь) назвали эти удивившие химиков соединения.

Здесь химия неожиданно нашла союзника в математике, в той ее области, которая казалась до сих пор весьма и весьма отвлеченной, далекой от практики, — в топологии.

Топологию интересует, каковы формы различных фигур, как они могут взаимно располагаться, как преобразовать их, не разрывая. Это похоже даже на фокус. И действительно, среди тех хитроумных геометрических построений, которыми занимается топология, часто встречаются математические головоломки. Из ленты, перекрутив ее и склеив концы, получают необыкновенное кольцо (кольцо Мебиуса). Если ленту теперь разрезать пополам вдоль, она не распадется на два кольца, а превратится в более узкое перекрученное кольцо. Если же разрезать ленту по трети ширины, получится два сцепленных кольца, подобно катенану. Кольца могут быть соединены и более сложно.

Катенаны — одно из самых молодых детищ химического синтеза. Их нужно искать в природе — они там должны быть. Их свойства нужно изучать, потому что необычное строение этих цепочек может очень многое дать и химии, и физике, и биологии.

Современная химия открывает новое даже там, где все хорошо известно, где ничего интересного, казалось бы, уже найти нельзя.

Элементы, для которых в таблице Д. И. Менделеева не было предусмотрено места и для них пришлось пристраивать к ней особую, нулевую группу. Элементы, которые не вступали ни в какие реакции. Элементы, которые за свое химическое упрямство получили прозвище инертных, или благородных. Кроме того, они на Земле еще и редкие.

Да и как могли они иметь иные свойства? Ведь внешние электронные оболочки и гелия, и аргона, и неона, и криптона, и ксенона, и радона — всех шести членов семейства инертных — полностью «укомплектованы» электронами. Поэтому они не могут ни отдавать свои электроны, ни забирать чужие.

Внешние оболочки их атомов устойчивы, и укоренилось мнение, что устойчивость эту ничем поколебать нельзя. На самом же деле она оказалась мифом.

Открыты были и гидраты аргона, криптона и ксенона — любопытные соединения. В них молекулы газов включены в кристаллическую решетку воды. Обошлось здесь без обычной химической связи.

Как-то, еще давно, вспомнили о фторе — самом агрессивном из элементов, — фторе, который соединяется решительно со всеми элементами и не может оставаться в одиночестве, повсюду выискивает себе компаньонов. Не сможет ли он расшевелить инертные атомы?

Изучая соединения фтора с платиной, химики случайно получили новое вещество. В его молекулы, кроме фтора и платины, вошел ксенон. Впервые инертность инертного была поколеблена. Произошло это несколько лет назад. Затем попытались соединить ксенон с одним фтором. И снова удача! А теперь появились окислы, фториды и другие соединения более тяжелых, инертных газов — не только ксенона, но и криптона, и радона.

Среди них — взрывчатка, она успешно может соперничать с любой другой, хотя сейчас еще слишком дорога. Среди них — будущие медицинские препараты. Наконец, новые соединения оказались очень удобны, чтобы в них сохранять и неустойчивый фтор, и устойчивый ксенон. Из такой «кладовой» легко добыть оба газа.

Легкие же газы — гелий и неон — остались пока непокоренными, и справиться с ними будет гораздо труднее. Труднее — не обязательно невозможно. Важно, что химия инертных родилась и сделала первый и, можно сказать, блестящий шаг.

Своим рождением она загадала и новые загадки.

Перейти на страницу:

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука