Читаем Химия завтра полностью

А для математики безразлично, что именно мы решаем. Формулы-то ведь одни и те же. Поэтому по изменению электрических величин можно судить о других, их «заменителях», о том, что делается с ракетой, когда меняются условия полета.

Как, например, узнать, что сделать, чтобы точно выдержать заданный режим — температуру, давление, плотность? Меняются одни величины, какими же будут другие? Опять уравнение, и языком математики можно описать технологические процессы — хотя бы получения материала. И электромодель дает ответ с поразительной быстротой.

Перебрав все варианты, машина остановится на наилучшем. Она подскажет, как устроить химический реактор, как наладить его работу.

Какую же, в конце концов, ставит цель это вторжение математики и физики в химию?

Проверяя себя опытом, теория должна добыть как можно больше сведений о строении молекул. Она должна выяснить, какая существует связь между молекулярной архитектурой и свойствами самих молекул — физическими, химическими, биологическими. В далекой перспективе физика, химия, биология должны вместе нарисовать единую картину мира.

Однако молекул — и тех, что уже созданы, и тех, какие еще создадут, — фактически бесконечное множество. Если каждую из них изучать отдельно, работа окажется невыполнимой. Но для соединений удастся, вероятно, построить какую-то классификацию, установить какой-то порядок, систему. Тогда и появится возможность разобраться в безумной сложности органики и предсказать, какие новые ее детища могут появиться.

Уже сейчас раздвинулись рамки «синтетического» творчества. А потом они раздвинутся еще шире. Будут создаваться разнообразные материалы с наперед заданными свойствами, какие потребуются людям.

Творец новых веществ, химия прокладывает дорогу к неведомым сейчас тайникам превращений. Раскрываются секреты химических реакций, механизмов химических связей и всего того, что происходит с молекулами, атомами, группами атомов, ионами, электронами. И открытия, уже сделанные сегодня, прокладывают пути в будущее иной раз неожиданные и очень важные для химической практики завтрашнего дня.

Мы привыкли считать, что молекулы состоят из атомов. Но возможно ли, чтобы не атомы, а целые молекулы или ионы послужили стройматериалом тоже для молекулярного здания, только более сложной кладки?

Оказалось, что в природе существует множество таких сложных построек — комплексов. В центре — атом или ион, комплексообразователь. Это может быть и металл, и почти любой из элементов периодической системы. Вокруг него находятся связанные с ним группы атомов или ионы. Это — лиганды. Они могут располагаться в вершинах невидимых многоугольников или многогранников — квадрата или тетраэдра, куба или октаэдра и других. Связи от центрального атома могут расходиться как клешни краба или щупальца осьминога.

К комплексам неприменимы обычные представления о химических связях. Поэтому говорят, что они — настоящее чудо химического мира. И в чем тут дело, какие силы удерживают лиганды вокруг комплексообразователи, до конца не выяснено.

«Комплексное соединение — очень сложное «содружество», в нем каждый из «союзников» испытывает влияние своего соседа… Все составные части комплекса перестраиваются, приспосабливаясь к совместному существованию… Комбинируя атомы металлов с разными атомами, нонами, молекулами, способными выступать в роли лигандов, можно получать необычные, иногда очень денные вещества, и число таких комбинаций может быть как угодно большим», — пишет член-корреспондент Академии наук УССР К. Яцимирский.

Комплексы мы найдем в солях морской воды и минералах, в крови и хлорофилле — в природе живой и неживой. Более того, усложненные молекулы — комплексы — неизбежный спутник множества реакций. Можно сказать, что и мы построены из комплексов и с комплексами имеем дело на каждом шагу.

Стоит заменить какую-либо из частей, его образующих, и резко меняются свойства. Нерастворимое становится растворимым, появляется другая окраска, меняются электрические и магнитные свойства. Потому-то, имея дело с комплексами, легко получать совершенно необычные вещества.

Связывая в комплекс ионы, можно удалить соли и из жесткой воды сделать мягкую. Комплексные соединения — иониты — легко притягивают и задерживают и золото из морской воды, и любой другой драгоценный металл, где бы он ни находился. Чистый уран стали извлекать из руд именно с помощью комплексов. Мы не познакомились бы ни с редкоземельными, ни с трансурановыми элементами, не приди нам на подмогу комплексы.

Теперь — мостик в будущее. Где химия комплексов найдет себе место? Всюду, где будут добывать рассеянные, редкие элементы. Полем деятельности для нее станут океан и земные недра.

Перейти на страницу:

Похожие книги

От водорода до …?
От водорода до …?

Издание представляет собой сборник рассказов о химических элементах, т. е. о видах атомов, из которых построены звезды и Солнце, Луна и планеты, земля, вода, воздух, растения, животные и мы сами.Это рассказы о тех химических элементах, которые занимают определенное место в периодической системе, созданной великим химиком Дмитрием Ивановичем Менделеевым. В этой естественной системе место, занимаемое тем или иным элементом, позволяет определить не только его химические и физические свойства, но также состав и свойства соединений, образуемых им с другими элементами. Рассказам об элементах предшествует вступление. В нем кратко дана история развития взглядов на материю, из которой построены тела природы.Авторы стремились сделать каждый рассказ по возможности самостоятельным, законченным. Книга может быть особенно полезной при изучении общего курса химии учащимися старших классов средних школ и студентами вузов, где химия не является ведущей специальностью.

Евгений Иванович Руденко , Пётр Рейнгольдович Таубе

Химия