Например, у мутантного фага, который утратил способность прикрепляться к бактериальной клетке, удаётся обнаружить дефект в структуре ДНК: не хватает определённого звена в цепочке. Значит, именно в этом звене была записана программа построения белков фага, ответственных за прикрепление к бактерии. Дефектная ДНК не могла отдать вовремя нужного приказа, и из клетки вышел неполноценный мутантный фаг.
В коллекциях учёных всё больше накапливается таких мутантных фагов, «захромавших на одну ногу», всё больше устанавливается связей, пополняется словарь языка макромолекул.
Другой, не менее сложной проблемой генетики является проблема генетического обмена, в результате которого две особи с разными свойствами дают начало потомству, несущему в себе черты обоих родителей. Вопрос о том, почему один из двух братьев похож на папу, а другой на маму, тоже решается при участии фагов.
Фаги дают исследователю возможность проследить за скрещиванием не организмов и не клеток, а изолированных молекул ДНК. Представьте, что в одну и ту же бактериальную клетку впрыснуты двумя разными фагами две разные молекулы ДНК. Каждая из них немедленно принимается за дело, то есть две цепочки, из которых она состоит, расходятся, и на обеих половинках образуются похожие как зеркальное отражение цепочки. Вскоре молекулам ДНК становится тесно внутри бактериальной клетки. В такой тесноте не мудрено и перепутаться. Какая-то из вновь образующихся цепочек начала «отпечатываться» с одной родительской цепочки, а потом ей «подвернулась» другая родительская цепочка. Вот и получается гибридная молекула ДНК, а после растворения, распада клетки из неё выходит часть фагов, которые похожи на оба родительских фага и в то же время отличаются от каждого из них. Почти как у людей, не правда ли?
Список заслуг бактериофагов перед наукой и человечеством растёт.
Бактериофаги являются прекрасной молекулярной моделью не только для генетиков, но и для исследования таких проблем, как паразитизм.
Бактериофагов приходится причислить к паразитам. Для бактерий — это антимир, как для нас — вирусы оспы или бешенства. Познать законы паразитизма фагов на бактериях — это значит ближе познакомиться с повадками своих собственных паразитов.
Бактериофаги помогли биологам понять самую суть той трагедии, которая разыгрывается в поражённой клетке хозяина. Долгое время действие её развёртывалось как бы за закрытым занавесом. Учёные даже придумали таинственное название «эклипс-фаза» для того периода, когда вирус, проникший в клетку, как бы исчезает в ней до того момента, когда новое поколение вирусных частиц выходит из клетки. На вид (даже если смотреть под электронным микроскопом) в клетке ровным счётом ничего не происходит.
А на самом деле в клетке уже хозяйничает вирусная ДНК, подавляя наследственные механизмы самой клетки, раздавая направо и налево свои приказы, распоряжаясь всеми запасами клетки по своему усмотрению. Зная последовательность этих событий, можно попытаться вовремя вмешаться: помешать вирусу, помочь клетке. Для этого используют различные химические лечебные препараты.
С тех пор, как биологи поднялись на молекулярный уровень исследований, перед ними раскрылись многие секреты «антимира». Установили, какие вещества нужны микробам от наших клеток. Химики синтезировали очень похожие вещества.
Человек принимает лекарство, микробы не замечают подмены и, наглотавшись, погибают, человек выздоравливает.
Труднее всего бороться с вирусами. Проникнув в клетку, они так тесно переплетают свои и её жизненные интересы, так удачно маскируются, что пока просто нет возможности бить по вирусу без риска задеть саму клетку.
Нет, вирусологи отнюдь не собираются складывать оружие. Они выискивают слабое звено в молекулярной цепи явлений вирусного паразитизма, ту «ахиллесову пяту», которую можно будет поражать.
Новорожденный уже с первым вдохом получает первую порцию микробов, которые тут же деловито начинают обживать его носовую и ротовую полость. К концу первых суток жизни из организма ребенка удаётся выделить более 12 видов микробов. К десятому дню количество удваивается. В одной капле слюны взрослого человека можно насчитать миллионы живых микробов.
Антоний Левенгук, в XVII веке впервые увидевший микробов через отшлифованные им стёкла, ничуть не ошибался, когда писал про обнаруженные им живые существа: «В моём рту их больше, чем людей в Соединённом Королевстве!»