Читаем Холод в реторте полностью

<p><strong>Александр Колпаков</strong></p><p><strong>ХОЛОД В РЕТОРТЕ</strong></p><p><image l:href="#i_001.png"/></p><p>У алхимиков Юпитера</p>

На Юпитер я попал перед окончанием профтехучилища: обычная преддипломная практика — Не стоит, видимо, описывать путешествие туда. Кто не знает, как оно происходит?

Начну с того, что я очутился где-то на седьмом небе, а точнее — в атмосферной лаборатории тамошних химиков. Обыкновенное «летающее блюдце» с гектар размером. На нем намонтирована уйма установок синтеза. Реакторы всякие, трубопроводы, холодильники, компрессоры, пушки ионизирующих излучений. Словом, все как полагается — Снуют толпы лаборантов, техников, операторов. А командует парадом благообразное существо, чем-то смахивающее на нашего декана Михаила Давыдовича. Лицом, конечно. А вместо рук у него восьмерка симпатичных щупальцев.

Вхожу на «блюдце» и направляюсь прямо к Мих Даву (так его, оказывается, зовут наши ребята, работающие здесь, — сходство с деканом не одному мне в глаза бросилось). Представился ему, беседуем. Мимо с бешеной скоростью мчатся аммиачно-метановые турбулентные вихри. Далеко внизу тяжело плещется аммиачный океан. Крепкий морозец! Градусов девяносто ниже нуля Цельсия… На краях «блюдца» навалом лежат глыбы твердого аммиака, чуть подальше — бруски аммиачного глицина (так здесь называют одну из наших земных аминокислот, только атомы кислорода в ней заменены на группу NH).

— Обязанности ионизатора знакомы? — спросил Мих Дав. Я деловито кивнул.

— Вопросов нет?

— Пока нет.

— Ну, тогда принимайтесь за работу.

Манипуляторы перемешали глыбы аммиака и аммиачного глицина. Сверху все это посыпали ледяной крошкой — смесью аммиачных серина и аланина, потом спрессовали в увесистый ледяной кристалл. Мих Дав энергично махнул двумя верхними щупальцами — и я включил ионизирующую пушку. Поливаю кристалл гамма-квантами, только дымок легкий курится! И на глазах вся эта ледовая масса начинает оживать, пучиться, как тесто, пока не образовался живой аммиачный белок. Вот от него стали отрываться толстые колбаски. Шмякнувшись на транспортер, они тут же исчезали в пасти синтезатора. А с противоположного конца реактора — там, где бодро бежал конвейер, — уже соскакивали готовые изделия. Биороботы.

Мих Дав зычно скомандовал, и биороботы, построившись в колонну по два, вниз головой прыгали прямо в аммиачный океан.

— С ходу включаются в строительство подводных… то бишь подаммиачных городов, — пояснил Мих Дав, поймав мой вопрошающий взгляд.

Но, я чувствую, вы мне не очень верите. Думаете, все это фантастика чистой воды (или, по крайней мере, чистого аммиака). Вовсе нет. Во всяком случае, юпитерианская «технология» синтеза имеет под собой некоторую научную основу. В том смысле, что и у нас, на Земле, вполне возможны химические реакции при морозе градусов в восемьдесят — сто пятьдесят, а то и в двести с лишком.

<p>Рифы и мели «ледяной химии»</p>

Химические реакции при низких и сверхнизких температурах? До самого последнего времени ученые относились к этому крайне скептически. Вот цитата из солидной монографии: «Проведение синтезов при низких и сверхнизких температурах нецелесообразно из-за чрезвычайно малых скоростей реакций, обусловленных резким уменьшением фактора еE/kT» (для очень любознательных: этот фактор еще называют «активационным множителем». Здесь Е — энергия активации, k — постоянная Больцмана, е — основание натуральных логарифмов, Т — абсолютная температура в градусах Кельвина. Этот множитель определяет способность молекул участвовать в химических реакциях).

Дело в том, что не все столкновения между молекулами приводят к химическому взаимодействию. Хорошо, если из миллиона молекул только сто или двести способны к взаимодействию. А способны те, которые обладают некоторым избытком энергии. Чтобы стать «эффективной», молекула должна сначала запастись энергией.

Как же увеличить долю «эффективных» молекул? Ответ прост: увеличь численное значение множителя еE/kT. Например, повышением температуры. Кроме того, «ленивые» молекулы можно «подстегнуть» гамма-лучами, светом, рентгеном, электрическими разрядами. Однако эти способы представлялись бесперспективными для возбуждения реакций при низких и сверхнизких температурах, когда доля эффективных молекул ничтожно мала и почти все реагенты — твердые.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Научпоп / Образование и наука / Документальное / Физика