Но здесь, казалось бы, возникает противоречие: как добавить к чему-то тепла, не делая его при этом более горячим?
На практике добиться такого почти невозможно, но теоретически это происходит следующим образом: поршень располагается почти на дне вертикального цилиндра. Горячий воздух, температура которого равна температуре примыкающего к цилиндру нагревателя, сжимается до небольшого объема между поршнем и дном цилиндра. Затем газ расширяется и толкает поршень, тем самым создавая движущую силу. Если бы цилиндр был полностью герметичен — если бы шел адиабатический процесс, — то газ бы остывал. Однако, поскольку цилиндр находится рядом с нагревателем, в него поступает теплота, приток которой компенсирует снижение температуры.
Таким образом, при поступлении теплоты воздух расширяется, создавая некоторое количество движущей силы, но его температура при этом остается неизменной. Такой процесс называется изотермическим расширением. При заданной неизменной температуре он производит максимум движущей силы из заданного количества теплоты.
Как и адиабатический процесс, изотермический процесс может идти в обратную сторону. В этом случае вы надавливаете на поршень в цилиндре, содержащем газ, температура которого равна температуре примыкающего к цилиндру охладителя. Температура не повышается, как произошло бы при адиабатическом процессе, поскольку при ее повышении теплота уходит к охладителю. Это называется изотермическим сжатием. При заданной неизменной температуре в таком процессе требуется
Держа в уме два этих процесса, адиабатический и изотермический, Карно разработал проект идеального теплового двигателя максимальной эффективности.
На рисунке показан вертикальный цилиндр, в котором вверх и вниз ходит поршень. Внизу слева находится нагреватель, обозначенный буквой А, а справа — охладитель, обозначенный буквой В. Теплота используется для расширения газа, который непосредственно толкает поршень.
Когда газ необходимо нагреть, цилиндр с ним подводится к нагревателю (А), а когда его необходимо остудить, цилиндр подводится к охладителю (В). В представлении Карно нагреватель огромен, а потому его температура не падает, сколько бы теплоты из него ни выходило. Она остается, скажем, на отметке Т (нагревателя) градусов. Подобным образом огромен и охладитель, температура которого не растет, сколько бы теплоты в него ни сбрасывалось, оставаясь, скажем, на отметке Т (охладителя).
Далее Карно описывает механизм работы этого двигателя. Это четырехступенчатый цикл, который повторяется снова и снова.
СТАДИЯ 1
Поршень находится почти на дне цилиндра, и некоторое количество горячего воздуха, температура которого равна Т (нагревателя), сжимается в малом объеме между поршнем и дном цилиндра. Цилиндр придвигается к нагревателю, и некоторое количество теплоты, назовем его Н, поступает в газ. В результате газ расширяется и толкает поршень, производя некоторое количество М(1) движущей силы.
Карно указывает, что процесс носит изотермический характер, поэтому вся теплота Н уходит на производство движущей силы М(1).
Это называется рабочим ходом, поскольку большинство движущей силы двигателя применяется именно на этой стадии.
Однако, чтобы двигатель был полезным, останавливаться на этом нельзя. Поршень должен снова опуститься на дно цилиндра, чтобы процесс можно было повторить.
СТАДИЯ 2
Чтобы поршень снова опустился вниз, толкающий его газ необходимо снова сжать. По мнению Карно, лучше всего для этого охладить его до минимально возможной температуры, поскольку сжимать холодный газ проще, чем горячий.
(Если вы в этом сомневаетесь, надуйте воздушный шарик и положите его в холодильник. Через несколько минут он значительно уменьшится в размере, поскольку воздух внутри него остынет и станет более “сжимаемым”. Именно поэтому зимой приспускаются автомобильные шины.)
Но как лучше всего быстро охладить газ в цилиндре двигателя? Необходимо позволить ему произвести адиабатическое расширение и толкнуть поршень еще выше.
Таким образом, на этой стадии двигатель создает еще немного движущей силы, которую мы назовем М(2), а газ в цилиндре охлаждается до температуры Т (охладителя).
СТАДИЯ 3
Теперь температура газа гораздо ниже, а следовательно, газ гораздо легче поддается сжатию, и некоторая доля движущей силы М(1), произведенной на первой стадии, используется, чтобы толкнуть поршень вниз и снова сжать газ до небольшого объема. Назовем эту долю М(3).
Карно указывает, что сжатие носит изотермический характер, поэтому М(3) минимальна.
(В соответствии с теорией теплорода Карно полагал, что в ходе этого сжатия вся теплота Н, вошедшая в газ на первой стадии, выходит из него в охладитель.)