Читаем Холодильник Эйнштейна полностью

Чтобы лучше всего объяснить подсчет вероятностей, нужно вернуться к истокам идеи, лежащим в сфере азартных игр. Представьте простую игру, в которой вы выигрываете пари, если верно угадываете, какой стороной упадет монетка. Допустим, монетка без подвоха — орел и решка выпадают с равной вероятностью, — а значит, у вас равные шансы угадать, какой стороной она упадет, либо ошибиться в своей догадке. Что, если подбросить монетку сто раз? Вам сложно будет угадать результат каждого броска, но интуитивно вы поймете, что шанс выбросить сто решек или сто орлов крайне мал. Шанс выбросить пятьдесят решек и пятьдесят орлов, напротив, значительно выше. Если точно, шансы таковы:

Шанс выбросить ровно 50 решек и 50 орлов: примерно 1 к 12.

Шанс выбросить о решек и 100 орлов: примерно 1 к 1 миллиону триллионов триллионов.

Мало кто из нас готов поставить на такое. Неудивительно, что идеальное соотношение 50/50 — самый вероятный результат, а шансы выбросить неравное соотношение орлов и решек резко сокращаются по мере увеличения неравенства.

Если построить график вероятности выпадения всех возможных комбинаций при ста подбрасываниях монетки, получится плавная математическая кривая, по форме напоминающая сечение старого церковного колокола. (Такие графики часто называют колоколообразными кривыми.) Верхушка колокола находится посередине горизонтальной оси графика. Это показывает, что равное соотношение 50 орлов и 50 решек наиболее вероятно. При движении влево и вправо от этой точки кривая уходит вниз. Это говорит, что чем более неравным оказывается соотношение орлов и решек, тем меньше становится его вероятность. Левый конец графика соответствует ситуации, в которой выпали одни орлы. Правый — ситуации, когда выпали одни решки. В этих крайних точках кривая очень близка к нулю.

Пик кривой — это среднее количество решек (50), выбрасываемое в нескольких сериях по сто бросков. Ключевая характеристика таких кривых — одинаковая вероятность отклонения в большую и меньшую сторону от среднего значения. Таким образом, вероятность выбросить 55 решек равна вероятности выбросить 45 решек. Колоколообразные кривые также предполагают, что каждая единица данных должна быть независима от всех остальных. Ни одно отдельное подбрасывание монетки и ни одна серия подбрасываний не влияют ни на одно другое.

Колоколообразные кривые встречаются при представлении многих научных данных, которые часто соответствуют указанным критериям. Примером может служить распределение роста взрослых людей одного пола — их рост представляется на графике в форме колоколообразной кривой. Другой пример — показатели их кровяного давления. Вы также можете попросить меткого стрелка сто раз выстрелить в яблочко мишени. Затем посчитайте количество пулевых отверстий, скажем, в радиусе одного дюйма от яблочка, количество отверстий в радиусе от одного до двух дюймов, от двух до трех дюймов и так далее. Постройте кривую на основе этих данных, и она окажется колоколообразной. (Чем выше меткость стрелка, тем у́же колокол кривой.) В обратную сторону это тоже работает. Если распределение пулевых отверстий формирует характерную колоколообразную кривую, то положение яблочка можно вычислить, посмотрев на ее пик. Подобным образом астрономы выясняют, где на самом деле находится звезда, ориентируясь на серию неточных результатов определения ее положения.

В конце 1850-х годов, сидя в гранитном кабинете с высоким потолком в Маришаль-колледже, Максвелл применил принцип, лежащий в основе колоколообразной кривой, к идеям Клаузиуса. В результате появилась область науки, называемая статистической механикой. Сначала Максвелл повторил утверждение Клаузиуса, что температура газа пропорциональна средней скорости его частиц, но затем пошел в новом направлении. Он отметил, что одни частицы движутся быстрее, а другие медленнее среднего, и все они оказывают влияние на поведение газа.

Но как их сосчитать? Поскольку в кубическом сантиметре газа содержится около 10 миллионов триллионов частиц, оценивать влияние каждой частицы нецелесообразно, поэтому Максвелл ввел законы вероятности. Вместо того чтобы рассчитывать скорость каждой частицы, он определял в заданном объеме газа процент частиц, которые могут двигаться в любом заданном диапазоне скоростей. Он предположил, что при каждой температуре есть скорость, с которой частицы газа движутся с наибольшей вероятностью. Однако есть также частицы, движущиеся быстрее и медленнее. Шанс найти частицу, которая движется с конкретной скоростью, тем ниже, чем сильнее эта скорость отличается от наиболее вероятной. Шансы снижаются аналогично тому, как снижается вероятность получить более далекое от равного число орлов и решек при подбрасывании монетки.

Перейти на страницу:

Все книги серии Библиотека фонда «Траектория»

Братья Райт. Люди, которые научили мир летать
Братья Райт. Люди, которые научили мир летать

В начале XX века человечество охватила «летная лихорадка» – страстное стремление воплотить, наконец, в жизнь многовековую мечту об управляемом полете. Правительства США и стран Европы тратили огромные суммы на программы по созданию первого летательного аппарата с мотором. А в это время в небольшом американском городке в штате Огайо два сына местного епископа на собственные небольшие средства строили свою летающую машину. История о том, как скромные владельцы велосипедной мастерской, не окончившие даже колледжа, сконструировали и испытали первый в мире управляемый самолет, рассказанная лауреатом Пулитцеровской премии, обладателем Национальной книжной премии США Дэвидом Маккаллоу.Орвилл и Уилбур Райт заинтересовались полетами после знакомства с детской французской игрушкой, похожей на «вертолет» с двумя пропеллерами и резиновой лентой. Любопытство, пытливость ума, чтение книг и страсть к полетам помогли братьям Райт сконструировать первый управляемый самолет.Из книги, полной биографических и исторических подробностей, читатель узнает, как братья Райт наблюдали за птицами и почему этот опыт оказался необходимым при испытании первых планеров в неприметном Китти Хок на Внешних отмелях, как неудачи только подтолкнули к окончательной решимости летать и как четыре полета на «Флайере» в декабре 1903 года изменили ход истории человечества.

Дэвид Маккаллоу

Публицистика
Происхождение всего: От Большого взрыва до человеческой цивилизации
Происхождение всего: От Большого взрыва до человеческой цивилизации

Невероятно компактный рассказ геофизика Дэвида Берковичи о том, как все везде появилось: звезды и галактики, атмосфера Земли, океаны, клетка и, наконец, человеческие цивилизации, написан трепетно и талантливо. Сочетая юмор и безупречную научную канву, Берковичи с головокружительной скоростью проводит нас сквозь пространство и время – почти 14 млрд лет, показывая при этом связи между теориями, помогающие понимать такие темы, как физика частиц, тектоника плит и фотосинтез. Уникальный эксперимент Берковичи в равной мере впечатляет научной убедительностью и литературным мастерством и станет незабываемым опытом знакомства с вопросами космологии, геологии, климатологии, человеческой эволюции как для искушенного читателя, так и для новичка.

Дэвид Берковичи

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука

Похожие книги

Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Как изменить мир к лучшему
Как изменить мир к лучшему

Альберт Эйнштейн – самый известный ученый XX века, физик-теоретик, создатель теории относительности, лауреат Нобелевской премии по физике – был еще и крупнейшим общественным деятелем, писателем, автором около 150 книг и статей в области истории, философии, политики и т.д.В книгу, представленную вашему вниманию, вошли наиболее значительные публицистические произведения А. Эйнштейна. С присущей ему гениальностью автор подвергает глубокому анализу политико-социальную систему Запада, отмечая как ее достоинства, так и недостатки. Эйнштейн дает свое видение будущего мировой цивилизации и предлагает способы ее изменения к лучшему.

Альберт Эйнштейн

Публицистика / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Политика / Образование и наука / Документальное