Статья Шеннона не достигала и тридцати страниц, но позволила людям впервые в истории измерить информацию совершенно объективным и четко определенным образом. Что это значит? Фотография, роман, картина — примеры информации. Шеннон предоставил нам способ числового сравнения их относительных размеров. Важность этой идеи сложно переоценить. Это значит, что мы, например, можем представить в количественном выражении все телефонные звонки в мире и точно определить, какую сеть необходимо построить для их передачи. Но плюсы не ограничиваются практической стороной дела. Шеннон нашел объективное определение информации, подобно тому как Уильям Томсон в Шотландии в 1850-х годах сумел дать определение температуре, разработав абсолютную температурную шкалу.
В статье Шеннона в первую очередь удивляет подход автора, который перекликается с подходом пионеров термодинамики XIX века. Подобно Джеймсу Клерку Максвеллу, Людвигу Больцману и Джозайе Уилларду Гиббсу, Шеннон отталкивался от принципов статистики. Он показал, что те же законы вероятности, которые объясняют поведение теплового потока, объясняют и поведение потока информации.
Задача связи, начинает Шеннон, заключается в “восстановлении (точном или приближенном) в данной точке сигнала, отправленного в другой”[25]
. Но затем он делает неожиданный шаг и заявляет, что для количественного измерения информации необходимо не принимать в расчет ее смысл. “Эти семантические аспекты связи не имеют отношения к инженерной задаче”, — отмечает Шеннон. Сначала такой подход кажется холодным и обреченным на провал, однако на самом деле оказывается освобождающим. Он делает теорию Шеннона универсальной: отделив смысл от сообщения, он нашел способ измерить размер всех возможных сообщений. В сфере теплоты весьма удобна температурная шкала Томсона, которая не зависит от того, температура какого вещества измеряется. Так, мы можем достоверно заявить, что температура бруска железа, стакана воды и кочана капусты составляет 300 кельвинов. Шеннон аналогичным образом показывает нам, как можно оценить информационный размер фрагмента текста, картины и генома.Далее Шеннон делает еще одно важное допущение и говорит, что вся информация зашифрована. Единственное различие между двумя людьми, использующими систему вроде SIGSALY, и двумя людьми, говорящими на обычном английском языке, заключается в том, что в первом случае лишь собеседники знают, как именно шифруется сообщение, а во втором сообщение шифруется английскими звуками, смысл которых известен всем, кто владеет английским языком. Это может показаться очевидным — я просто говорю, что, прежде чем понимать язык, необходимо его освоить, — но это важно для рассуждений Шеннона, которые основаны на том, что коммуникация между людьми возможна лишь после определения принципа шифрования сообщений.
И здесь Шеннон предложил блестящую идею. Он заявил, что любое сообщение можно передать в качестве ответов “да” или “нет” на последовательность вопросов, сформулированных соответствующим образом. Исключений не существует. Любую единицу информации можно передать в расширенной версии игры в “Двадцать вопросов”, в которой первый игрок загадывает известного человека, а второй должен угадать, кого загадали, задав первому двадцать вопросов, предполагающих ответ “да” или “нет”.
Шеннон показал, что если увеличить лимит вопросов и позволить игроку спрашивать и дальше, то игрок всегда сумеет найти ответ.
Чтобы понять, как это работает, представьте, что Боб хочет передать просьбу о помощи Алисе, используя вопросы с ответами “да” или “нет”. (Специалисты по теории информации часто используют имена Алиса и Боб для обозначения отправителей и получателей информации.) Чтобы добиться реалистичности, скажем, что Боб может вступать в контакт с Алисой лишь одним способом — включая и выключая фонарик.
Допустим, Алиса и Боб умеют читать по-английски и одинаково представляют себе стандартную алфавитную последовательность от
Алиса и Боб принимают следующие правила: в определенное время, скажем в 13:00, Боб либо включает фонарик, либо оставляет его выключенным. Ровно секунду спустя он делает то же самое. Он продолжает передачу с секундными интервалами, пока не завершит сообщение. Алиса записывает то, что видит в каждый секундный интервал. Если она видит вспышку, то ставит единицу (1), если не видит — ноль (0).
Кроме того, Алиса и Боб договариваются, что каждые 1 и о, отправляемые Бобом, служат ответом на один и тот же вопрос, предполагающий ответ “да” или “нет”: “Находится ли передаваемая тобою буква в левой половине алфавитного списка?”
Боб и Алиса принимают 1 за ответ “да”, а 0 — за ответ “нет”. Если Алиса видит 1, то отбрасывает правую половину списка. Если она видит 0, то отбрасывает левую. Увидев вторую 1 или 0, она снова делит буквенный список пополам. Она продолжает “уполовинивание списка”, пока у нее не останется лишь одна буква — та самая, которую хотел передать ей Боб.