Вдохновленный непосредственной работой с первыми в мире компьютерами, в 1950 году Тьюринг написал знаменитую теперь статью, опубликованную в философском журнале
Статья в журнале
Тьюринг понимал, что дать прямой ответ на этот вопрос вряд ли возможно. Даже если мозг представляет собой схему простых химических взаимодействий, то в эту схему входят миллиарды компонентов. В связи с этим в качестве первого шага Тьюринг решил изучить упрощенный вариант другого биологического процесса и выяснить, можно ли объяснить его работой простой химической “схемы”. Он поставил перед собой задачу продемонстрировать, что в основе сложного биологического поведения могут лежать простые в своей сущности процессы.
В результате родилась одна из самых амбициозных статей Тьюринга “Химические основы морфогенеза”. Представленная на рассмотрение в конце 1951 года, она была не чем иным, как попыткой описать механизм формирования эмбрионов в ходе внутриутробного развития. Тьюринг считал эту работу лучшей из своих статей с 1936 года, когда он заложил основы компьютерных вычислений. По всем параметрам это продукт исключительного научного воображения. В статье Тьюринг полностью переосмысливает второе начало термодинамики. Здесь, вероятно, важно вспомнить, что с тех пор, как в середине XIX века открыли, что энтропия всегда увеличивается, второе начало часто вызывало сильные негативные ассоциации. Неизбежное рассеяние энергии, например переход теплоты из горячих зон в холодные, стало считаться синонимом разложения и смерти. Рассеяние, или выравнивание всех различий во Вселенной, отныне казалось причиной, по которой приходят в упадок и умирают такие красивые и изящные системы, как живые существа.
Тьюринг перевернул эти пессимистичные представления с ног на голову, утверждая, что рассеяние не только вызывает распад, но может и
Иными словами, Тьюринг пытался объяснить, как эмбрионы, развитие которых начинается с одной клетки — оплодотворенной яйцеклетки, называемой зиготой, — делятся на множество одинаковых, по сути, клеток, которые впоследствии превращаются в специализированные клетки, упорядочиваются в высокоорганизованную систему и составляют живой организм. Взгляните, например, на свои руки. Если учесть, что каждая из небольшого числа одинаковых клеток, из которых вы однажды состояли, содержала полный набор ваших генов, то как клетки, сформировавшие кисти ваших рук, поняли, что им нужно включить лишь гены с информацией о кистях? Почему они не сформировали на конце ваших рук ступни? Тьюринг полагал, что ключ к пониманию этого биологического строительства лежит в диффузии морфогенов. Он написал, что этот процесс представляет собой “возможный механизм, с помощью которого гены зиготы определяют анатомическую структуру итогового организма”.
Мысль о том, что диффузия может создавать структуру, неочевидна. Два современных специалиста по биологии развития Джереми Грин и Джеймс Шарп отмечают: “Просто представьте каплю чернил в воде — при диффузии молекулы чернил будут медленно, но верно рассеиваться в воде, пока вода не приобретет легкий чернильный оттенок. Изначальная структура — капля — разрушена; итоговое состояние лишено пространственной неоднородности и потому лишено структуры. Диффузия, казалось бы, становится квинтэссенцией увеличения энтропии и усугубления беспорядка. Мысль, что сама диффузия может создать структуру — что она может снова превратить хорошо растворившиеся чернила в каплю, — была (и остается) весьма неожиданной”.