Читаем Хранение цветов полностью

При хранении растительной, в том числе и цветочной, продукции в МГС уменьшение объема кислорода в контейнере или упаковке пропорционально массе заложенной на хранение продукции и интенсивности ее дыхания. Последняя, в свою очередь, будет пропорциональна произведению значения первоначальной интенсивности дыхания на концентрацию кислорода, выражаемую отношением текущего объема кислорода к первоначальному его объему. Поступление кислорода в контейнер извне пропорционально площади мембраны S, разности парциальных давлений этого газа вне и внутри контейнера и проницаемости мембраны по кислороду Р. Процессы поступления и поглощения кислорода в соответствии с этим определяются следующим образом:

dV1 = —K(V1/V)mdt(Уменьшение содержания О2) + p1P1S[V–V1]dt(Поступление О2), (5)

Где V первоначальный объем кислорода, м3, m — масса цветочной продукции внутри контейнера, кг; р — парциальное начальное давление кислорода, Па; К — см. формулу (1).

Решением дифференциального уравнения (5) будет

V1 = V(1 + mKe-t/tP1P1S)(1+mK/p1P1S). (6) В выражении (6) τ—постоянная времени, характеризующая скорость установления стационарного режима:

τ = V/(p1P1S + mK). (7)

Если p1 = 0, то через время t = τ содержание кислорода в контейнере уменьшится в е раз, а через t=4τ упадет ниже предельно допустимого значения—2 %. Это справедливо для замкнутого герметичного объема в отсутствие мембраны, поскольку ее наличие обеспечивает возможность поступления определенного количества кислорода извне.

При дыхании продукции, заложенной на хранение, выделяется количество углекислого газа, пропорциональное объему поглощаемого кислорода (с поправкой на дыхательный коэффициент 6). Количество углекислого газа, проходящего через мембрану dV2, пропорционально площади мембраны S, парциальному давлению углекислого газа в контейнере (давлением углекислого газа во внешней среде вследствие его малости можно пренебречь), а также проницаемости мембраны по углекислому газу σР1. С учетом этого для баланса по углекислому газу получим

dV2 = δ(V1/V)mKdt-p1{V2/V)δP1Sdt. (8)

Решение уравнений (5) и (8) можно представить в следующем виде (Стрельцов, 1983):

ξ1 — ξ0(1+mK/pP0S); (9)

ξ2 = δξ0(σ + p1P2S/mK) = δ(ξ0 — ξ1)/δ, (10)

где ξ1 концентрация кислорода; ξ2 — концентрация углекислого газа; ξ0 — начальная концентрация кислорода (21 %); δ — селективность.

Рассмотрим некоторые частные случаи, характеризующиеся выражениями (6), (7), (9) и (10).

1. Начало закладки продукции на хранение соответствует значению t = 0. Очевидно, что концентрации кислорода и углекислого газа в контейнере находятся на уровне концентраций в окружающей среде.

2. Мембрана с дефектом (разрыв, перфорация и т. п.). Внутреннее пространство контейнера сообщается с внешней средой. Этому соответствует Р → ∞ при времени выхода на стационарный режим f → ∞, и выражение t>3τ соответствует ситуации, при которой концентрации кислорода и углекислого газа в контейнере совпадают с их концентрациями в окружающей среде.

3. Условиям сохранения герметичности контейнера с продукцией, снабженного ГСЭМТ, при достаточно большом времени с момента закладки на хранение (t>3τ) соответствуют уравнения (9) и (10), которые справедливы для стационарного режима хранения.

На практике при известных характеристиках мембраны (проницаемости, селективности и площади), а также параметрах дыхания закладываемой на хранение продукции и ее массе, воспользовавшись уравнениями (9) и (10), можно определить режим хранения, обеспечиваемый той или иной мембраной. Обычно соотношение концентраций кислорода и углекислого газа для определенной продукции известно хотя бы по типу газовой смеси (нормальная, субнормальная и т. п.). Выражения (9) и (10) помогают рассчитать контейнеры с мембранами для хранения растительной продукции, что в значительной степени сокращает время на проведение поисковых экспериментов.

Для упрощения расчетных соотношений введем параметр «загрузки мембраны»: μ=m/S (кг/м2). Тогда с учетом (9)

μ = [(ξ00)-1]P1P1/K. (11)

Следует отметить, что с помощью одной мембраны невозможна независимая регулировка концентраций кислорода и углекислого газа: если задана концентрация кислорода в стационарном режиме, то концентрация углекислого газа тем самым уже определена уравнением (10).

Представляет практический интерес рассмотрение вопросов возможности регулирования газового состава в контейнерах с ГСЭМТ при хранении цветочной продукции. Известно, что существуют экстремальные значения концентрации кислорода и углекислого газа, превышение которых в случае максимума или снижение ниже минимума недопустимо по биохимическим соображениям. Для кислорода такое экстремальное значение—2, для углекислого газа—10 %. С учетом этого можно определить границы координатной сетки режимов хранения растительной продукции, а также оценить возможности регулирования газового состава в пределах указанных границ при использовании для хранения контейнеров с ГСЭМТ (Корнилова, 1983).

Перейти на страницу:

Похожие книги

Как повысить плодородие почвы
Как повысить плодородие почвы

В настоящее время повышение уровня плодородия почвы является одной из главных проблем для большинства садоводов и огородников. Очень важно подобрать такие методы, которые отвечали бы всем современным требованиям экологичности. Оказывается, подобные способы повышения качества грунта были известны еще в древности.Представленное издание расскажет о том, как с помощью сидератов, методики севооборота и использования органических удобрений, компоста и биогумуса значительно улучшить физико-химические характеристики почвы, а также повысить урожайность возделываемых на приусадебном участке садово-овощных культур.Отдельная глава посвящена описанию типов грунтов, их свойств и состава. Читатели также найдут подробную информацию о правилах обработки почвы: подготовительных работах, поливных мероприятиях, внесении удобрений и перекопке садовых и огородных площадок.

Светлана Александровна Хворостухина

Руководства / Дом и досуг / Словари и Энциклопедии / Сад и огород
Великое лекарство китайских императоров от 1000 болезней. Лимонник: как лечиться и как выращивать
Великое лекарство китайских императоров от 1000 болезней. Лимонник: как лечиться и как выращивать

Лимонник – сильнейший природный стимулятор и адаптоген, снимающий и физическую, и умственную усталость, значительно увеличивающий силы организма. Не зря лимонник на протяжении тысячелетий был признанным лекарством китайских целителей – сменялись династии, а императоры по-прежнему продлевали с его помощью свою жизнь и молодость.В этой книге вы найдете различные методы профилактики заболеваний и их лечения с помощью лимонника, способы общего оздоровления организма лимонником, познакомитесь с множеством рецептов применения лимонника для усиления физической и умственной работоспособности, а также советы по выращиванию лимонника на садовом участке.Данное издание не является учебником по медицине. Все лечебные процедуры должны быть согласованы с лечащим врачом.

Татьяна Александровна Литвинова

Сад и огород / Здоровье и красота / Прочее домоводство / Дом и досуг