Этот цикл включения-выключения повторяется примерно каждые 100 000 лет, по мере того как звезда теряет до 40 % своей массы, а ядро сжимается еще сильнее. В конце концов игра заканчивается, и то, что осталось от звезды, схлопывается в объект размером с Землю (примерно 1 % от первоначального диаметра Солнца). В этот момент электроны (мы во многом их игнорировали, но они должны присутствовать, чтобы уравновешивать положительные заряды ядер) оказываются настолько близко друг к другу, что вмешиваются правила квантовой механики и запрещают им сближаться. Вспомним из главы 4 о том, что никакие два электрона не могут иметь одинаковую энергию, угловой момент и спин, благодаря чему возникают энергетические оболочки и подоболочки Периодической таблицы. В данном случае весь звездный остаток превращается в гигантский макроскопический атом, в котором электроны заполняют триллионы энергетических уровней. Результирующая сила, называемая давлением вырождения электронов, достаточна, чтобы уравновесить внутреннюю силу гравитации для остатков звезд, масса которых не превышает 1,4 массы Солнца.
Такая звезда называется белым карликом. Ее плотность составляет примерно 1 тонну на чайную ложку – представьте себе внедорожник, сжатый до размеров кубика сахара. Единственный источник энергии, оставшийся у такой звезды, – это тепло, которое она сохранила в своей предсмертной агонии из беспорядочных ядерных реакций. Она становится подобна угольку в камине, медленно излучающему тепловую энергию в пространство – сперва, когда она впервые раскрывается, отбросив внешние слои, это происходит при температуре 100 000 К или еще более высокой, но постепенно, по мере излучения тепла, температура становится все меньше и меньше. В сущности, ее масса уже исключена из цикла рождения и смерти звезд в Галактике. И несмотря на вероятность того, что во время последних пульсаций звезды часть произведенного ею Углерода будет извлечена и выброшена в космос вместе с ее изначальными внешними слоями, вряд ли можно сказать, что это хоть в какой-то мере обогатит Вселенную новыми атомами.
Большинство звезд Млечного Пути изначально уступают Солнцу по массе, и все они следуют очень похожему жизненному циклу. Это кажется нелогичным, но чем меньше масса звезды, тем больше времени требуется для ее эволюции4
. Даже первое поколение звезд во Вселенной, начавших свою жизнь с массой менее 80 % массы Солнца, все еще находятся в фазе горения Водорода. Если бы все звезды следовали этому сценарию, мы бы просто не смогли его обсуждать, потому что первичный Водород, Гелий и Литий изменились бы только за счет добавления крошечной доли Углерода, а Галактика была бы усеяна трупами белых карликов. К счастью для нас, более массивные звезды живут более драматичной жизнью.Звездные кузницы: вклад массивных звезд
Для звезд, масса которых уже в начале их жизни в несколько раз превышает массу Солнца, производство Углерода – это не конец пути. Излишек массы повышает плотность и температуру настолько, что часть Углерода на внешнем крае ядра может реагировать с Водородом в оболочке H → He и производить Азот посредством трех первых этапов CNO‐цикла (см. рамку 16.1). Кроме того, если температура становится достаточно высокой, ядра Гелия могут сливаться с Углеродом и образовывать Кислород, Неон и Магний (четные элементы 8, 10 и 12, к которым на каждом этапе добавляются два протона и два нейтрона: 12
C +Однако у звезд, чья исходная масса вещества превышает восемь солнечных масс, жизнь гораздо более интересна. Как мы уже отмечали в этой главе, несмотря на то, что у них гораздо больше ядерного топлива, чем у звезд с меньшей массой, они используют его расточительно, генерируя энергию в тысячи и сотни тысяч раз быстрее, чем звезды «солнечного» типа. Поэтому их жизнь соразмерно короче – звезда с массой 25 солнечных масс живет менее 7