Читаем Хранители времени. Реконструкция истории Вселенной атом за атомом полностью

Это было бы правдой, если бы вы не теряли энергию на обмен с окружающей средой, а также если бы она не требовалась вашему сердцу, чтобы прокачивать кровь по телу, и если бы ваши нейроны не пребывали в крайнем возбуждении по мере того, как вы читаете эти строки. На самом деле для того, чтобы сохранять температуру вашего тела в ее оптимальном рабочем диапазоне при условии постоянного излучения энергии, и для того, чтобы поддерживать все остальные функции вашего тела, вы используете энергию примерно с той же скоростью, с какой ее использует 100-ваттная электрическая лампочка: 100 джоулей в секунду. Это означает, что ваша общая потребность в энергии за день составляет 100 Дж/с × 60 сек/мин × × 60 мин/ч × 24 часа/день = 8 640 000 Дж. Если мы переведем это в килокалории, то получим 8 640 000 Дж × 1 ккал/4184 Дж = = 2065 ккал в день, – примерно столько вы и получаете при стандартной диете.

Энергия, которая поддерживает в вас жизнь, прошла долгий и богатый событиями путь. Изначально, сотни тысяч лет назад, она была испущена в ходе ядерной реакции, происходившей в недрах Солнца, тысячи лет блуждала в его глубинах, потом вырвалась на свободу с его поверхности, в виде света помчалась к Земле, достигла ее меньше чем за восемь минут, потом ее впитал лист растения, чтобы запустить фотосинтез и сформировать химические связи, потом этот лист склевала курица и энергия, заключенная в нем, преобразилась в мясистое крылышко, а это крылышко, в свою очередь, съели вы, и у вас в животе химические связи вновь перестроились, породив согревшее вас тепло – иными словами, формы энергии, от ядерной и электромагнитной до химической и кинетической, выглядят совершенно по-разному, но ее величина остается неизменной.

<p>Энергия связи электрона</p></span><span>

Теперь, когда мы уплели пинту «Бена и Джерри» и поняли, что такое энергия, мы можем вернуться к электронам, движущимся в атомах по четко заданным образцам, и посмотреть, как они взаимодействуют со светом, с соударяющимися частицами и с соседними атомами, с которыми они, с той или иной степенью вероятности, могли бы объединиться и образовать молекулы.

Каждая из электронных оболочек и подоболочек, о которых мы говорили выше, соотносится с определенным количеством «энергии связи». Поскольку сила электрического притяжения ослабевает с увеличением расстояния, электроны, расположенные ближе всего к ядру, связаны наиболее прочно. Мы исчисляем эти взаимодействия, определяя энергию связи как равную той энергии, которая потребовалась бы, чтобы полностью освободить электрон из атома; такой процесс называется «ионизацией», а атом, который в результате получает заряд, – «ионом». Поскольку есть все логические основания назвать электрон с нулевой энергией связи свободным (он ведь не давал клятву верности своему бывшему спутнику-ядру), мы характеризуем энергии связи как отрицательные; иными словами, нам, чтобы получить ноль, нужно прибавить энергию к отрицательной величине.

Схема энергетических уровней Водорода показана на рисунке 4.5. Электрон в 1s-состоянии обладает энергией связи –13,6 эВ (см. рамку 4.1), где эВ обозначает «электронвольт»; 1 эВ – это крошечное количество энергии, подходящее для разговора об отдельных атомах и их составляющих, и он равен 1,6 × 10–19 Дж. Если бы я сообщил этому электрону Водорода +13,6 эВ, он стал бы свободным (ионизированным). Если бы я сообщил ему +14 эВ, то он бы сперва использовал первые +13,6 эВ, чтобы освободиться, а потом ускользнул бы с кинетической энергией 0,4 эВ. Если бы я сообщил ему 25 эВ, он бы умчался прочь со скоростью 2000 км/с и через секунду прибыл бы из Нью-Йорка в Миннеаполис.

Энергию к беспокойному электрону можно передать двумя способами. Если достаточно близко промчится фотон с энергией, равной 14 эВ, электрон может захватить его, уничтожить и преобразовать его электромагнитную энергию в кинетическую, необходимую для высвобождения. Есть и альтернатива: с атомом может столкнуться другой атом, молекула или субатомная частица, скажем, еще один электрон; опять же, если его кинетическая энергия больше чем 13,6 эВ, электрон может высвободиться.

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Бозон Хиггса
Бозон Хиггса

Кто сказал что НФ умерла? Нет, она затаилась — на время. Взаимодействие личности и искусственного интеллекта, воскрешение из мёртвых и чудовищные биологические мутации, апокалиптика и постапокалиптика, жёсткий киберпанк и параллельные Вселенные, головокружительные приключения и неспешные рассуждения о судьбах личности и социума — всему есть место на страницах «Бозона Хиггса». Равно как и полному возрастному спектру авторов: от патриарха отечественной НФ Евгения Войскунского до юной дебютантки Натальи Лесковой.НФ — жива! Но это уже совсем другая НФ.

Антон Первушин , Евгений Войскунский , Игорь Минаков , Павел Амнуэль , Ярослав Веров

Фантастика / Научная Фантастика / Фантастика: прочее / Словари и Энциклопедии / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Тайны нашего мозга, или Почему умные люди делают глупости
Тайны нашего мозга, или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из общеизвестных фактов, которые не всегда верны… Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг. Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном природном механизме. Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами: личной жизнью, обучением, карьерой, здоровьем. Перевод: Алина Черняк

Сандра Амодт , Сэм Вонг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература