Более 90 % всех видов растений следуют C3-фотосинтезу, в ходе которого три атома Углерода из трех разных молекул CO2
связываются в цепочку. Этот путь возник несколько миллиардов лет назад, когда концентрация CO2 в атмосфере была намного выше, чем сегодня, а концентрация O2 – ниже. Примерно 30 миллионов лет назад, когда концентрация CO2 значительно снизилась (а миллиарды лет фотосинтеза подняли уровень O2 до современных значений), развился более эффективный C4-фотосинтез, при котором уже на первом этапе связывается не три, а четыре атома Углерода. Это оказалось особенно выгодным в более жарком и сухом климате, поэтому несмотря на то, что C4-растения составляют менее 3 % всех растений, произрастающих сегодня на Земле, именно они отвечают за производство примерно 25 % мирового растительного материала. Кроме того, целых 46 % сельскохозяйственного производства зерна связано с тем, что кукуруза, сорго и просо используют C4-фотосинтез5. Третий механизм, который с эволюционной точки зрения также появился довольно поздно, называется CAM‐фотосинтез (звучит как скороговорка: кислотный метаболизм толстянковых). Он обеспечивает первый этап фотосинтеза у остальных 6 % растений (в первую очередь у кактусов и суккулентов, в том числе и у важных компонентов тропических коктейлей с зонтиком, таких как агава текильная и ананасы).Молекулы атмосферного CO2
отражают соотношение изотопов Углерода, о котором мы говорили в главе 4: 98,9 % содержат 12C, 1,1 % – 13C и один из триллиона – 14C. Напомним, что все изотопы элемента химически идентичны; то есть молекула 12CO2 химически неотличима от молекулы 13CO2, и ее атом Углерода будет вести себя точно так же, когда эту молекулу разобьет на части сгусток солнечной энергии и она послужит для создания сахарозы или чего-то еще. Однако единственная отличительная особенность молекулы 13CO2 состоит в том, что она тяжелее, чем ее «сестрица» 12CO2, а тяжелые предметы движутся медленнее – как может подтвердить бывший марафонец, впоследствии набравший немало килограммов. «Раздобревшие» молекулы 13CO2 не столь проворны, как их более легкие родственницы.Рис. 10.1. Распределение соотношений 13
C/12C для С3-растений (светло-серый) и С4-растений (темно-серый). Распределения не перекрывают друг друга и достигают пиковых значений примерно на уровне –2,0 % и –0,5 % соответственно по сравнению с содержанием 13C в воздухе. Отрицательные величины указывают на то, что все растения, о чем подробно говорится в тексте, не проявляют особой склонности к усвоению более тяжелого и медленного изотопа 13C, но на более кратком пути C3-фотосинтеза эта черта выражена в большей степениКак следствие, когда C3-растение начинает поглощать CO2
, чтобы начать процесс фотосинтеза, оно легче находит более быстрые молекулы 12CO2 – они всегда под рукой, в то время как «ленивые» и более тяжелые изотопы появляются не так часто. В результате материал C3-растений содержит в среднем на 1,95 % меньше 13C, чем было в окружающем воздухе6. C4-растениям, с другой стороны, приходится проявлять терпение, поскольку им необходимо собрать четыре молекулы CO2 и разделить их еще до того, как завершится первый этап процесса. Хотя они тоже «недолюбливают» медленные молекулы 13CO2, они не могут позволить себе быть настолько привередливыми, и в результате дефицит 13C в их целлюлозе составляет всего лишь 0,55 %7 (см. рис. 10.1).