У большинства звезд, в отличие от Солнца, есть звезда-спутник или даже несколько, поэтому то, что они обмениваются массой, хорошо известно. Однако на поверхности белых карликов вследствие этого постепенно накапливается слой нового материала, полученного от звезды-донора. Так продолжается до тех пор, пока толщина этого слоя не достигает примерно километра. В этот момент на поверхности запускается термоядерный взрыв, не только порождающий новые элементы, но и сметающий силой взрыва слой вещества, как минимум равный тому количеству, которое изначально украдено у звезды-спутника, а возможно, и превосходящий его, после чего масса белого карлика остается практически неизменной (или немного уменьшается). Впрочем, иногда она возрастает, и что становится тому причиной – то ли масса, пожертвованная нормальной звездой-спутником, то ли слияние двух белых карликов, движущихся по орбите вокруг друг друга, – нам еще предстоит определить. Но превышение предела в 1,4 солнечной массы вызывает волну ядерного горения, которая проносится по всей звезде, создавая новые элементы и разнося звезду на мелкие осколки.
В то время как массивные сверхновые производят много Кислорода и продуктов его горения, таких как Неон, Магний, Сера и Кремний, термоядерные сверхновые, о которых мы говорим сейчас, производят больше элементов, близких в Периодической таблице к Железу, поскольку синтез продолжается до самой стабильной ядерной формы во всей звезде. И хотя и в том и в другом случае образуются небольшие количества элементов тяжелее Железа, мы так и не можем с уверенностью судить о происхождении большинства более тяжелых элементов. Элементы с атомными номерами свыше 26-го распространены в гораздо меньшей степени, чем их собратья с малой массой (например, на каждые 1–10 атомов элементов с номерами от 44 до 94 приходится около 1 миллиона атомов Железа и 10 миллиардов атомов Водорода), поэтому процессы, порождающие их, могут быть достаточно редкими. Недавнее открытие, совершенное благодаря детекторам гравитационных волн6
, убедительно подтверждает существование как минимум одного нового источника тяжелых элементов.Описывая выше смерть звезды массой 25 солнечных масс, я не упомянул о драматичной судьбе коллапсирующего ядра. Оно стремительно сжимается, минует порог вырождения электронов, не позволяющий погибнуть белому карлику, и все они сливаются с протонами, образуя нейтроны. Так рождается нейтронная звезда. Если белый карлик подобен гигантскому макроскопическому атому, то нейтронная звезда – это гигантское макроскопическое атомное ядро. Оно имеет ту же плотность, что и обычное атомное ядро, около 1 миллиарда тонн на кубический сантиметр (это
Нейтронные звезды – поразительные объекты, способные создавать множество явлений самого исключительного характера, обнаруженных нами во Вселенной за последние полвека. Более того, мне удалось сделать карьеру на изучении этих экзотических звезд, и я легко мог бы написать о них пару сотен страниц. К счастью для вас, дорогой читатель, я устою перед искушением. Однако недавний прорыв в создании тяжелых элементов связан именно с нейтронными звездами, поэтому сделать небольшое отступление все же придется.