В шестой строке все становится еще сложнее, поскольку 4f-подуровень (способный содержать до 14 электронов) вкрадывается между 6s-подуровнем и 5d-подуровнем, вследствие чего за Барием (…6s2) следуют четырнадцать так называемых «лантаноидов» (отмеченных в таблице астериском), а потом располагаются Лютеций (…5d1) и Гафний (…5d2). Эта система повторяется в седьмой строке после 88-го элемента (Радий, 7s2). Сюда украдкой пробирается Актиний со своим электроном (5f1), а вслед за ним мы находим пять самых тяжелых элементов из всех, какие только встречаются в природе, и еще двадцать четыре, которые нам удалось создать (впрочем, лишь на краткое время) в лаборатории. Срок существования первых пяти искусственно произведенных элементов варьируется от нескольких столетий до года, следующие девятнадцать живут от нескольких месяцев до всего лишь кратких миллисекунд, и неудивительно, что ни один из них не продается в сети Walmart. В теории остров стабильности предполагается у 126-го элемента, но если учесть, что нынешний рекордсмен, Оганесон, располагается в таблице под номером 118, а срок его существования составляет меньше двух десятых долей секунды, то добраться до этого острова, вероятно, будет невозможно.
Правила, изложенные выше, могут на первый взгляд показаться произвольными, но у них есть реальные основания в нашей математической модели квантового мира, и они позволяют нам
Энергия
Энергия – это фундаментальная концепция в построенных нами моделях материального мира, и она неразрывно связана с атомами в том виде, в каком мы пытаемся осмыслить их суть. В отличие от некоторых других терминов, принятых в физике, формальное определение энергии очень близко к тому значению, в каком мы используем это слово в повседневной речи: энергия представляет собой способность совершать работу – толкать или тянуть; производить движение, сопротивляться ему или менять его скорость или направление; преображать вещество из одной формы в другую. Огромная практическая польза нашего представления об энергии заключается в том, что, хотя энергия и предстает во множестве обликов и охотно меняет формы, ее нельзя ни создать, ни уничтожить. В физике мы говорим о том, что энергия
В каждом из четырех фундаментальных взаимодействий проявляются разные формы энергии. Гравитация заставляет объекты, обладающие массой, приближаться друг к другу. Каждая частица, присутствующая на Земле, притягивает все остальные земные частицы, поэтому мы говорим, что наша планета обладает гравитационной энергией – и эта энергия эквивалентна той, которая необходима, чтобы разобрать ее, частица за частицей, и направить все эти частицы в бесконечность. Именно такое количество энергии высвободилось в то время, когда все планетезимали ранней Солнечной системы срослись и сформировали Землю. Остаток этой энергии сегодня проявляется во внутренней температуре нашей все еще остывающей планеты, равной 6000 К. Если вы, удерживая какой-нибудь предмет над поверхностью Земли, отпустите его, он упадет «вниз»; таким образом, он обладает
Электромагнитное взаимодействие проявляет энергию самыми разными способами. Благодаря ему вращается стрелка компаса, а высокоэнергичные частицы, излученные Солнцем, наводятся на Северный полюс, рождая северное сияние. Колебания электронов в проводах заряжают наши фонарики и телефоны и вращают колеса электропоезда. Свет – это высшая форма электромагнитной энергии, волна колеблющегося электрического и магнитного поля, которая мчится сквозь пространство со скоростью в 300 000 км/с (см. рамку 4.2, где кратко описаны длина волны света, энергии и соответствующие температуры). Две частицы, одна из которых характеризуется положительным зарядом, а другая отрицательным, притягивают друг друга и, по аналогии с гравитацией, обладают потенциальной электрической энергией, когда находятся во взаимном отдалении, и электрической энергией связи, когда соединены. Энергия, которая высвобождается (или поглощается), когда атомы меняют свое взаимное расположение, чтобы сформировать (или расщепить) молекулы, – тоже электромагнитная по своей природе, – называется химической энергией.