Читаем Хулиномика 4.0. Хулиганская экономика. Ещё толще. Ещё длиннее полностью

Есть ещё непрерывные случайные величины, которые на некотором отрезке могут принимать любое значение. Ну вот возьмём мы, смешаем зачем-то горячий чай и холодную водку и опустим туда термометр. Кстати, его тоже изобрели в XVII веке, и тогда концепцию температуры – для нас привычную и понятную – только-только начали применять. Вы уже догадались, что в нашем стакане с волшебным чаем температура – величина непрерывная, у неё неограниченное количество возможных значений, хотя минимальное и максимальное мы представляем неплохо.

Для дискретных случайных переменных матожидание можно обозначить греческой буквой µ (мю), и оно будет суммой всех результатов, помноженных на вероятность каждого из них. В случае броска нашей условной монеты матожидание будет равно одной второй, и результата только два. А вообще, конечно, их может быть любое число, в том числе и бесконечное. Но их можно сосчитать и узнать средневзвешенную оценку, а она и называется матожиданием. Также его называют средним арифметическим. Но чтобы его посчитать, мы должны знать точные вероятности событий.

Для пущей ясности возьмём обычный (честно и точно сделанный) шестигранный кубик. Очевидно, что вероятность выпадения каждой цифры – одна шестая, граней ведь шесть. Сумма всех выпадений равна 1 + 2 + + 3 + 4 + 5 + 6 = 21. Берём от каждой одну шестую (надеюсь, сможете сами?), складываем вместе (или просто 21 делим на 6), получаем три с половиной. Значит, матожидание броска кубика – 3,5. Если мы много-много раз бросим кубик и посчитаем среднее, то получится число, близкое к 3,5. Понятно, что в случае броска одного кубика ожидать 3,5 бессмысленно, а вот в случае двух ждать семёрки – хорошая идея. И чем больше раз мы бросим кубик, тем ближе среднее будет к 3,5. Его и следует ждать математически, поэтому оно и называется матожидание.

Кроме среднего ещё есть медиана – это когда половина результатов эксперимента больше, а половина меньше этой цифры. Она часто используется в демографии. Например, зарплату по регионам корректнее сравнивать не среднюю, а медианную, потому что очень маленькие или (чаще) очень большие зарплаты, даже если таких всего несколько, заметно искажают реальную картину. А на медиану они не влияют.

Если нам потребуется матожидание непрерывных функций, то идея там точно такая же, но складывать надо интегралы. Слово страшное (сам его боюсь), но вообще это просто сумма площадей под графиком функции. Например, взять температуру – вероятность того, что термометр покажет у кипятка ровно 100 градусов, равна нулю, потому что он всегда может показать 100,001 или 99,999. Таких цифр бесконечное количество, и у каждой конкретной из них вероятность равна нулю. Но можно посмотреть, например, плотность вероятности у какого-либо отрезка.

<p>9.6. Генеральная совокупность против выборки</p>

Теперь пару слов о совокупности. Мы измеряли признаки всех возможных вариантов выпадения кубика, хорошо и годно всё посчитали. Но в реальности результаты экспериментов сосчитать трудно, потому что мы гораздо чаще имеем дело с выборками, а не со всей совокупностью результатов. Возьмём, например, дерево. Хотим мы оценить количество его листьев, берём пять веток и считаем на них среднее количество листьев. Потом умножаем их на количество веток, и у нас получится примерная (но неплохая) оценка количества листьев на дереве.

Так вот, реальное среднее количество листьев на ветке мы не знаем, а лишь приблизительно определили из пяти наших веток. Его принято обозначать не иксом, а иксом с чертой, и оно тем ближе к иксу, чем ближе количество отобранных нами веток к количеству веток на всём дереве. Если мы возьмём несколько отличающихся веток (а не только самые длинные, например), то наша выборка будет лучше отражать свойства всего дерева. Так и с людьми – если в исследуемой группе есть представители разных городов, профессий, возрастов, то выводы будут точнее и вернее, чем если опросить только вечно пьяных студентов МИРЭА.

В Америке был интересный казус с репрезентативностью выборки, когда журнал «Литерари Дайджест» опросил аж десять миллионов человек насчёт выборов президента. Это огромное количество респондентов: для достоверной статистики хватило бы двух-трех тысяч правильно собранных ответов. Журнал предсказал победу республиканцу Альфу Лэндону со значительным перевесом (60 на 40), а выборы выиграл демократ Франклин Рузвельт – как раз с таким же перевесом, но в обратную сторону. Дело в том, что большинство подписчиков журнала были республиканцами, а в попытке сгладить это несоответствие журнал рассылал бюллетени по телефонным книгам. Но не учёл забавного факта: телефоны тогда были доступны только среднему и высшему классу общества, а это были в основном республиканцы.

<p>9.7. Дисперсия</p>
Перейти на страницу:

Все книги серии Хулиномика (версии)

Хулиномика. Элитно, подробно, подарочно!
Хулиномика. Элитно, подробно, подарочно!

Алексей Марков – экономист, музыкант, писатель и почти филантроп. Автор нашумевших хулиганских книг «Жлобология», «Криптвоюматика» и «От подвала до стадиона».Вам кажется, что экономика – это очень скучно? Тогда мы идем к вам! Стоп, не пугайтесь! Вам даже не понадобится «стоп-слово», чтобы разобраться в «непонятных заумных формулах». Все намного проще, чем кажется, вы просто все еще не умеете ее готовить. Автор подаст вам экономику под таким дерзким соусом, что вы проглотите все это не жуя! Вы получите необходимые базовые знания и даже больше, а также найдете немало интересных ответов на вопросы:– Как рептилоиды управляют миром?– Что такое парадокс Ди Каприо и эффект заднего числа?– Почему биржа в России круче?– Как Павел Дуров может купить «Гугл» целиком?– Куда нельзя вкладывать деньги?* И самый главный вопрос, что хуже: не прочитать «Хулиномику» и остаться финансово-неграмотным нищим или полное прекращение работы Телеграм в России?Самое подробное и самое полное издание «Хулиномики» – ваши чит-коды на лучшую жизнь под этой обложкой!В формате PDF A4 сохранен издательский макет книги.

Алексей Викторович Марков

Экономика / Финансы и бизнес

Похожие книги