Для дискретных случайных переменных матожидание можно обозначить греческой буквой
Для пущей ясности возьмём обычный (честно и точно сделанный) шестигранный кубик. Очевидно, что вероятность выпадения каждой цифры – одна шестая, граней ведь шесть. Сумма всех выпадений равна 1+2+3+4+5+6 = 21. Берём от каждой 1/6 (надеюсь, сможете сами?), складываем вместе (или просто 21 делим на 6), получаем 3,5. Значит матожидание броска кубика – 3.5. Если мы много-много раз бросим кубик и посчитаем среднее, то получится число, близкое к 3.5. Понятно, что в случае броска одного кубика ожидать 3.5 бессмысленно, а вот в случае двух ждать семёрки – хорошая идея. И чем больше раз мы бросим кубик, тем ближе среднее будет к 3.5. Его и следует ждать математически, поэтому оно и называется матожидание.
Кроме среднего ещё есть медиана – это когда половина результатов эксперимента больше, а половина меньше этой цифры. Она часто используется в демографии. Например, зарплату по регионам корректнее сравнивать не среднюю, а медианную, потому что очень маленькие или (чаще) очень большие зарплаты, даже если таких всего несколько, заметно искажают реальную картину. А на медиану они не влияют.
Если нам потребуется матожидание непрерывных функций, то идея там точно такая же, но складывать надо интегралы. Слово страшное (сам его боюсь), но вообще это просто сумма площадей под графиком функции. Например, взять температуру – вероятность того, что термометр покажет у кипятка ровно 100 градусов, равна нулю, потому что он всегда может показать 100.001 или 99.999. Таких цифр бесконечное количество, и у каждой конкретной из них вероятность равна нулю. Но можно посмотреть, например, плотность вероятности у какого-либо отрезка.
9.6. Генеральная совокупность против выборки
Теперь пару слов о совокупности. Мы измеряли признаки всех возможных вариантов выпадения кубика, хорошо и годно всё посчитали. Но в реальности результаты экспериментов сосчитать трудно, потому что мы гораздо чаще имеем дело с выборками, а не со всей совокупностью результатов. Возьмём, например, дерево. Хотим мы оценить количество его листьев, берём 5 веток и считаем на них среднее количество листьев. Потом умножаем их на количество веток, и у нас получится
Так вот, реальное среднее количество листьев на ветке мы не знаем, а лишь приблизительно определили из 5 наших веток. Его принято обозначать не иксом, а иксом с чертой, и оно тем ближе к иксу, чем ближе количество отобранных нами веток к количеству веток на всём дереве. Если мы возьмём несколько отличающихся веток (а не только самые длинные, например), то наша выборка будет лучше отражать свойства всего дерева. Так и с людьми – если в исследуемой группе есть представители разных городов, профессий, возрастов, то выводы будут точнее и вернее, чем если опросить только вечно пьяных студентов МИРЭА.
В Америке был интересный казус с репрезентативностью выборки, когда журнал «
9.7. Дисперсия
Пока мы говорили лишь о средствах измерения основной тенденции, но ещё нам потребуется средство измерения её вариативности, иными словами, разброс её значений. Дисперсия случайной величины – это как она меняется от одного измерения до другого. Обозначается она как
Дисперсия – это сумма квадратов расстояний от каждого результата до среднего результата, делённая на их количество. Квадратов – потому что какие-то результаты отличаются от среднего в меньшую сторону, и, чтобы при складывании отрицательных отклонений сумма не уменьшалась, придумали возводить разницу в квадрат и складывать уже квадраты отклонений (которые всегда положительны).
Александр Юрьевич Ильин , А. Ю. Ильин , В. А. Яговкина , Денис Александрович Шевчук , И. Г. Ленева , Маргарита Николаевна Кобзарь-Фролова , М. Н. Кобзарь-Фролова , Н. В. Матыцина , Станислав Федорович Мазурин
Экономика / Юриспруденция / Учебники и пособия для среднего и специального образования / Образование и наука / Финансы и бизнес