Читаем Кибержизнь. Контуры медицины будущего полностью

Белая пульпа селезёнки составляет до 20% объёма органа. Включает в себя лимфатические узелки и периартериальные лимфатические влагалища (муфты). Строму белой пульпы также образует ретикулярная соединительная ткань. Кроме ретикулярных клеток к стромальным элементам относят также некоторые разновидности макрофагов, дендритные и интердигитирующие клетки, которые выполняют функции антигенной презентации. Эта функция позволяет обучать макрофаги, распознавать клетки, и принимать решение о необходимости утилизации той или иной клетки. При признаках старения клетки, ее мутации или онкологического преобразования возникает один и тот же эффект, который отражается на мембране – это эффект снижения метаболизма, то есть эффект снижения энергетической силы самой клетки. Макрофаги определяют этот момент и принимают четкое решение, достойна ли клетка продолжить свое существование или пришла пора ее утилизировать.

Красная пульпа селезёнки составляет 80% объёма органа и выполняет следующие функции:

– Депонирование зрелых форменных элементов крови.

– Контроль состояния и разрушение старых и поврежденных эритроцитов и тромбоцитов.

– Фагоцитоз инородных частиц.

– Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.

Красная пульпа селезёнки включает венозные синусы и селезёночные тяжи Бильроте (часть красной пульпы, расположенной между синусами). В тяжах Бильроте находятся форменные элементы крови, макрофаги, плазматические клетки, лежащие в петлях ретикулярной соединительной ткани. Здесь, по аналогии с мозговыми тяжами лимфатических узлов, заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники которых перемещаются сюда из белой пульпы. В пульпарных тяжах встречаются скопления В– и Т-лимфоцитов, которые могут формировать новые узелки белой пульпы. В красной пульпе задерживаются моноциты, которые дифференцируются в макрофаги. Синусы красной пульпы, расположенные между селезёночными тяжами, представляют собой часть сложной сосудистой системы селезёнки. Эти широкие тонкостенные сосуды неправильной формы выстланы эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними, через которые в просвет синусов из окружающих тяжей мигрируют форменные элементы.

В физическом смысле механизм распада осуществляет непрерывное производство энтропии в организме и подчиняется теореме Пригожина, которая гласит: в стационарном состоянии производство энтропии внутри термодинамической системы при неизменных внешних параметрах является минимальным и постоянным. Если система не находится в стационарном состоянии, то оно будет изменяться до тех пор, пока скорость производства энтропии или, иначе, диссипативная функция системы не примет наименьшего значения.

Австрийский физик-теоретик Эрвин Шрёдингер объясняет, как живая система экспортирует энтропию, чтобы поддержать свою собственную энтропию на низком уровне:

«Живой организм непрерывно увеличивает свою энтропию, или, иначе, производит положительную энтропию и, таким образом, приближается к опасному состоянию максимальной энтропии, представляющему собой смерть. Он может избежать этого состояния, то есть оставаться живым, только постоянно извлекая из окружающей его среды отрицательную энтропию. Отрицательная энтропия – это то, чем организм питается. Или, чтобы выразить это менее парадоксально, существенно в метаболизме то, что организму удается освобождаться от всей той энтропии, которую он вынужден производить, пока жив».

Отличительной особенностью механизма распада является то, что он состоит из двух частей. Первая – это апоптоз, действующая ныне теория запрограммированной смерти клетки, и вторая часть – фагоцитоз, который был открыт и подробно описан Мечниковым, то есть утилизация продуктов апоптоза. Апоптоз и фагоцитоз являются частями единого механизма распада.

Перейти на страницу:

Похожие книги