Механизм полета насекомых чрезвычайно сложен. Знаменитая, но выдуманная история 1930-х гг. рассказывает об одном швейцарском ученом, специалисте в области аэродинамики, который на основании расчетов доказал, что шмели не могут летать (на самом деле он доказал, что шмели не могут планировать, что правда). Однако не будем презрительно посмеиваться — с тех пор наши знания расширились весьма незначительно. В подробном обзоре о полете стрекоз, опубликованном в 1998 г., Дж. М. Уэйклинг и К. П. Эллингтон заключили, что наше представление об аэродинамике полета стрекозы ограничено недостаточным пониманием взаимодействия между двумя парами крыльев, и признали, что мы не можем создать достоверную модель ее полета. Ввиду такого значительного недостатка информации вряд ли можно прийти к надежным выводам относительно состава древней атмосферы только на основании теоретических расчетов механики полета.
Однако идея о том, что гигантским насекомым для полета требовалась более плотная, насыщенная кислородом атмосфера, так никогда и не была опровергнута. Мы увидим, что там, где не сработала теория, может сработать эмпирический подход. Есть и другие признаки колебаний уровня кислорода в современную эпоху (см. рис. 1). Геологические данные недвусмысленным образом указывают на то, что в океанах на больших глубинах содержалось мало растворенного кислорода, по крайней мере какой-то недолгий отрезок времени, соответствующий массовому вымиранию животных в конце пермского периода 250 млн лет назад. Причиной этого, скорее всего, стало падение уровня кислорода в атмосфере. Напротив, если принять во внимание закон сохранения массы (см. глава 3), приходится заключить, что гигантские залежи угля (представляющие собой главным образом органическое вещество, захороненное на протяжении каменноугольного и начала пермского периода) практически наверняка указывают на рост концентрации кислорода. Вопрос заключается в величине этого эффекта[24].
Основная трудность в определении состава воздуха в тот или иной период заключается в дискриминации причинных и тривиальных факторов. Ранние модели эволюции атмосферы показывали, что уровень кислорода на протяжении истории Земли колебался практически от нуля до современных значений. Эти исследования показали наше полное непонимание механизмов, контролирующих содержание кислорода в атмосфере. Трудности моделирования эволюции атмосферы могут объясняться ошибочностью исходных предпосылок: изменения в действительности происходили совсем не в то время, что мы предполагали. Но, прежде чем сказать, что мы сами создали себе проблему, следует отметить, что такая же сложность возникает и при создании стационарных моделей, в которых концентрацию кислорода считают постоянной. Мы не знаем, за счет чего в воздухе поддерживается постоянная концентрация кислорода, тогда как другие условия меняются.
Что, к примеру, происходит при пожарах? Поскольку при горении потребляется кислород, считается, что пожары ограничивают накопление кислорода в атмосфере. Без вмешательства человека источником огня в природе обычно являются разряды молнии. В современных условиях в большинстве случаев разряды молнии не приводят к пожарам из-за влажной растительности, особенно если грозы сопровождаются проливными дождями. Но, как нам говорят, органическое вещество легко загорается на воздухе при содержании кислорода выше 25%, значит, при таких условиях молния может стать причиной пожара даже в дождевых лесах. Чем выше содержание кислорода, тем больше вероятность возгорания, а распространяющийся огонь потребляет кислород. Если содержание кислорода достигает очень высокого уровня, пожары восстанавливают баланс.
Этот простой сценарий обычно не вызывает возражений, однако, на самом деле, он вводит в заблуждение. Баланс восстановится только в том случае, если леса при пожаре