Читаем Кислород. Молекула, изменившая мир полностью

Второй способ заставить кислород вступать в химические реакции заключается в том, чтобы передавать ему дополнительные электроны по одному, так чтобы каждый из двух неспаренных электронов получил подходящего партнера независимо от другого. Это может делать железо, поскольку оно имеет собственные неспаренные электроны (которые объясняют его магнитные свойства) и существует в разных состояниях окисления, которые в нормальных условиях характеризуются примерно одинаковой энергетической стабильностью. (Отчасти дело в том, что атом железа большой и удаленные от ядра электроны связаны с ним не очень прочно.) Способность железа передавать электроны по одному объясняет его сродство к кислороду и ржавление железных изделий и минералов. С этим же связана необходимость прятать железо в организме в молекулярные ловушки. Некоторые другие металлы, например медь, которые тоже могут существовать в двух или нескольких степенях окисления, эффективно передают электроны кислороду и поэтому в свободном виде тоже опасны.

Живые системы вынуждены учитывать странные химические свойства кислорода и, чтобы заставить его реагировать, передают ему электроны по одному. Клетки научились разделять процесс окисления пищи на отдельные стадии, на каждой из которых выделяется некоторое количество энергии, запасаемой в виде молекул АТФ (см. главу 3). К сожалению, на каждой стадии могут выделяться одиночные электроны, способные присоединяться к кислороду с образованием супероксидных радикалов. Непрерывное возникновение супероксидных радикалов в клетках означает, что, как ни странно, дыхание таит в себе ту же опасность, что и облучение.

Когда мы находимся в состоянии покоя, от 1 до 2% поглощенного клетками кислорода выделяется в виде супероксидных радикалов, а при физической активности этот показатель может достигать 10%. Эти цифры не кажутся угрожающими, но следует помнить, что при каждом вдохе мы поглощаем много кислорода. Взрослый человек с массой тела 70 кг за минуту вдыхает около четверти литра кислорода. Даже если лишь 1% превращается в супероксидные радикалы, за год человек производит 1,7 килограмма этих частиц. А из супероксидных радикалов в соответствии с приведенными выше реакциями могут возникать гидроксильные радикалы и пероксид водорода.

Они могут возникать, но возникают ли они на самом деле? Человеческий организм выработал эффективные механизмы устранения супероксидных радикалов и пероксида водорода до того, как они встретятся с железом и образуют гидроксильные радикалы (подробнее об этих механизмах мы поговорим в главе 10). Можно ли оценить, сколько гидроксильных радикалов все же образуется в организме, несмотря на указанные защитные механизмы?

К решению этой задачи можно подойти с двух сторон. Во-первых, теоретически мы способны рассчитать скорость образования гидроксильных радикалов на основе оценочных значений стационарной концентрации пероксида водорода и железа и известной кинетики реакции. По-видимому, в теле человека пероксид водорода и железо содержатся в стационарной концентрации около миллионной части грамма на килограмм массы тела. Это означает, что в организме образуется меньше 10-12 г гидроксильных радикалов на килограмм массы тела в секунду. Представить себе столь малую величину невозможно, но, если с помощью числа Авогадро перевести количество граммов в количество молекул, получаем значительно более понятное значение: в каждой клетке человеческого тела за секунду образуется примерно 50 гидроксильных радикалов[37]. Это означает, что за сутки каждая клетка выделяет 4 млн гидроксильных радикалов! Многие из них нейтрализуются тем или иным способом, а поврежденные молекулы ДНК или белков заменяются новыми, но со временем в организме, состоящем из 15 × 1012 клеток, накапливаются повреждения, которые вполне могут быть причиной старения.

Все хорошо, но пока это только теория. Если в клетках происходят такие серьезные повреждения, мы должны иметь возможность их измерить. Второй путь оценки количества выделяемых гидроксильных радикалов как раз и заключается в анализе нанесенных ими повреждений. Один метод анализа был разработан в конце 1980-х гг. Брюсом Эймсом и его группой в Беркли. Ученые следили за содержанием окисленных фрагментов расщепления ДНК в моче. Однако на этом пути возникает несколько сложностей. ДНК постоянно подвергается воздействию различных ферментов в нормальных процессах репликации и репарации, так что лишь некоторые типы окисленных фрагментов ДНК являются результатом действия гидроксильных радикалов, а другие могут возникать в нормальных физиологических процессах. Таким образом, мы должны точно знать, какие фрагменты являются результатом действия гидроксильных радикалов и какую часть всего набора фрагментов они составляют.

Перейти на страницу:

Все книги серии Civiliзация

Похожие книги

Алхимия
Алхимия

Основой настоящего издания является переработанное воспроизведение книги Вадима Рабиновича «Алхимия как феномен средневековой культуры», вышедшей в издательстве «Наука» в 1979 году. Ее замысел — реконструировать образ средневековой алхимии в ее еретическом, взрывном противостоянии каноническому средневековью. Разнородный характер этого удивительного явления обязывает исследовать его во всех связях с иными сферами интеллектуальной жизни эпохи. При этом неизбежно проступают черты радикальных исторических преобразований средневековой культуры в ее алхимическом фокусе на пути к культуре Нового времени — науке, искусству, литературе. Книга не устарела и по сей день. В данном издании она существенно обновлена и заново проиллюстрирована. В ней появились новые разделы: «Сыны доктрины» — продолжение алхимических штудий автора и «Под знаком Уробороса» — цензурная история первого издания.Предназначается всем, кого интересует история гуманитарной мысли.

Вадим Львович Рабинович

Культурология / История / Химия / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии