В рамках традиционного представления о развитии жизни на нашей планете затраты на расщепление воды и производство кислорода и связанные с ними трудности представляют собой эволюционный парадокс. Обычно решение этой загадки видят в естественном отборе. Допустим, в какой-то момент запасы сероводорода и растворенного железа подошли к концу, и жизнь вынуждена была адаптироваться к другому источнику энергии, такому как вода. Возможно, но при таком способе рассуждений возникает замкнутый круг. Гигантские геохимические запасы сероводорода и железа могли подойти к концу только в результате окисления каким-нибудь веществом, и самым вероятным (если не единственным) кандидатом на эту роль является кислород. Но до изобретения фотосинтеза в атмосфере
Однако этот аргумент не только бессмысленный, но и просто неверный. Анализ биомаркеров цианобактерий показывает, что оксигенный фотосинтез эволюционировал более 2,7 млрд лет назад. Но растворенное в океанах железо продолжало осаждаться в виде полосатых гор еще как минимум миллиард лет (см. главу 3). Так что никак нельзя утверждать, что запасы солей железа подошли к концу. Аналогичным образом, высокая концентрация сероводорода в океанских глубинах сохранялась вплоть до появления первых крупных животных, вендобионтов, и периодически обнаруживается еще и сегодня (см. главу 4). Так что приходится заключить, что оксигенный фотосинтез появился до исчерпания запасов железа и сероводорода, по крайней мере во
Как и почему он появился? Если вы внимательно читали предыдущую главу, вы должны знать ответ на этот вопрос. Некоторые косвенные данные указывают на то, что такой же окислительный стресс, как на Марсе (см. главу 6), стал причиной эволюции фотосинтеза на Земле. Детали этого процесса удивительно интересны и позволяют понять происхождение устойчивости к токсическому действию кислорода — по-видимому, неотъемлемому свойству самых первых форм жизни на Земле. Первые известные бактерии не производили кислород в процессе фотосинтеза, но могли «дышать» кислородом, иными словами, производить энергию за счет дыхания кислородом еще до появления этого газа в воздухе. Чтобы понять, как это возможно и какое отношение это имеет к нашей сегодняшней жизни, следует изучить механизм фотосинтеза и пути его эволюции.
Среди всех форм фотосинтеза только знакомый нам оксигенный фотосинтез в растениях, водорослях и цианобактериях является источником кислорода. Все другие формы так называемого
В целом в процессе фотосинтеза в растениях углекислый газ (СО2) из воздуха превращается в простые органические молекулы, такие как сахара (общая формула СН2О). Затем в митохондриях эти сахара сжигаются с образованием дополнительного АТФ (см. главу 3), а также превращаются в другие углеводы, липиды, белки и нуклеиновые кислоты, из которых строятся клетки. В главе 5 мы узнали о самом распространенном на планете ферменте Рубиско, который включает водород в молекулу углекислого газа. Однако, чтобы фермент работал, его нужно снабжать исходными материалами. Углекислый газ содержится в воздухе и растворен в океанской воде, так что с ним все просто. Получить водород сложнее — он очень быстро вступает в реакции (особенно с кислородом с образованием воды) и настолько легкий, что улeтучивается в космическое пространство. Таким образом, для доставки водорода нужна специализированная система. На самом деле в этом и заключается суть фотосинтеза, но на протяжении многих лет никто ее не понимал. Забавно, что ученые открыли механизм фотосинтеза только тогда, когда поняли, откуда берется кислород.
При оксигенном фотосинтезе водород происходит из воды, а вот происхождение кислорода точно неизвестно. Из суммарного уравнения фотосинтеза следует, что кислород берется либо из углекислого газа, либо из воды: