Если вы перемножите между собой эти значения, то получите величину дохода от клиента из группы риска (revenue at risk, далее – RAR).
При правильном объяснении концепция RAR может быть невероятно мощной и важной. Поэтому мы решили найти способ объяснять ее быстро и четко, даже для аудитории, не владеющей вычислительными навыками. В частности, нам предстояло ответить на вопросы: «Каким образом статистические модели предсказывают, что кто-то потратит на нас меньше денег (а то и вообще перестанет с нами сотрудничать) в следующие пару месяцев?»; «А это не напоминает гадание на кофейной гуще или шаманство?»
Нет, не напоминает. Хотя алгоритмы часто воспринимаются как волшебные формулы, доступные для понимания одним только математикам, в своем большинстве они просто отражают то, как мы думаем самым естественным образом. Чтобы доказать справедливость этого утверждения, рассмотрим историю трех участников программы постоянных клиентов: Мэри, Сьюзен и Тома. По неизвестным нам причинам все они совершали в этом марте меньше полетов по сравнению с мартом прошлого года. В этом марте Мэри летала всего три раза, однако годом ранее она совершила десять перелетов. Для Сьюзен этот показатель составил один полет, а для Тома – два против девяти годом ранее.
Внимательно посмотрите, как часто они летали в течение двенадцати месяцев перед последним мартом. А теперь попытайтесь заполнить приведенную ниже таблицу.
Какова, на ваш взгляд, вероятность того, что доход компании от путешествий Мэри, Сьюзен и Тома снизится в следующем году соответственно на 80, 50 и 20 %?
Многие люди, которым мы задавали этот вопрос, довольно быстро с ним справлялись.
Ответы их были довольно похожими и все они указывали примерно на то же, что и мой собственный ответ, приведенный ниже.
В течение двенадцати месяцев перед мартом Мэри стабильно летала по восемь или двенадцать раз в месяц. В марте она летала всего три раза. Это довольно необычно для нее – видимо, в этом месяце произошло нечто особенное. Возможно, она взяла отпуск, начала работать дома или просто заболела. С учетом прежних тенденций ее поведения шансы на то, что в течение следующих двенадцати месяцев она будет тратить на полеты на 80 % меньше прежнего, довольно невелики. Куда больше шансы, что доходы от работы с ней снизятся на 20 %, поскольку далее мы заметим в ее поведении два или три месяца низкой активности.
Между предыдущим мартом и ноябрем поведение Сьюзен было похоже на поведение Мэри. Однако с ноября она начала значительно реже пользоваться услугами нашей авиакомпании.
Судя по всему, речь идет о каких-то системных изменениях. Именно поэтому я считаю, что у нее имеется куда бо́льшая вероятность снижения количества полетов в ближайшие двенадцать месяцев, чем у Мэри.
А поведение Тома кажется совсем иным – оно не носит системного характера. Он стал летать всего два раза в месяц, а в последующие месяцы практически совсем прекратил полеты. Вот почему я совершенно не уверен, что будет происходить с доходами от полетов Тома в следующие двенадцать месяцев.
Уверен, вы поставили Мэри, Сьюзен и Тому примерно такие же оценки, ведь мы все склонны интуитивно анализировать поведение людей примерно сходным образом. Мы посмотрели, насколько часто наши участники летали в среднем, насколько сильно могут колебаться данные от месяца к месяцу, насколько сильно просел показатель количества полетов в марте и приняло ли это характер тенденции.
Я могу создать статистический алгоритм, способный анализировать эту информацию так же, как мы это делаем в своем подсознании. Для этого мне нужно преобразовать наши интуитивно важные факторы в математические переменные. Вот как это могло бы работать.
В крайней правой колонке содержатся переменные нашей модели, буквально предсказывающей вероятность снижения доходов. Статистическая модель выявляет клиентов, доход от которых сократился на 20, 50 и 80 % за прошлый год, затем изучает значение предсказывающих переменных (чуть подробнее об этом ниже) за двенадцать месяцев до начала снижения доходов. Это позволит «научить» модель рассчитывать вероятность того, что расходы какого-то клиента могут снизиться на определенный процент. Безусловно, это довольно существенная информация. Если вы знаете, что один (или несколько) из ваших наиболее важных клиентов (приносящих вам доходы и прибыль) собирается уйти от вас, вы можете предпринять шаги по предотвращению этого. Как минимум вы выясните у них причины ухода и, возможно, предложите им стимулы (скидки, улучшение условий обслуживания и что-то еще), заставляющие их остаться.